Dispersing points on intervals

Abstract We consider a problem of dispersing points on disjoint intervals on a line. Given n pairwise disjoint intervals sorted on a line, we want to find a point in each interval such that the minimum pairwise distance of these points is maximized. Based on a greedy strategy, we present a linear time algorithm for the problem. Further, we also solve in linear time the cycle version of the problem where the intervals are given on a cycle.

[1]  Zoltán Füredi The densest packing of equal circles into a parallel strip , 1991, Discret. Comput. Geom..

[2]  Srinivasan Venkatesh,et al.  Connectivity Graphs of Uncertainty Regions , 2016, Algorithmica.

[3]  Tomás Lang,et al.  Scheduling of Unit-Length Independent Tasks with Execution Constraints , 1976, Information Processing Letters.

[4]  E. Erkut The discrete p-dispersion problem , 1990 .

[5]  Marek Chrobak,et al.  Online Scheduling of Equal-Length Jobs: Randomization and Restarts Help , 2007, SIAM J. Comput..

[6]  Nodari Vakhania A study of single-machine scheduling problem to maximize throughput , 2013, J. Sched..

[7]  S. S. Ravi,et al.  Facility Dispersion Problems: Heuristics and Special Cases (Extended Abstract) , 1991, WADS.

[8]  Sándor P. Fekete,et al.  Approximation of Geometric Dispersion Problems , 1998, Algorithmica.

[9]  Nodari Vakhania,et al.  Minimizing maximum lateness of jobs with naturally bounded job data on a single machine in polynomial time , 2013, Theor. Comput. Sci..

[10]  Marek Chrobak,et al.  A Note on Scheduling Equal-Length Jobs to Maximize Throughput , 2006, J. Sched..

[11]  Stefan Nickel,et al.  The maximum dispersion problem , 2013 .

[12]  Panos M. Pardalos,et al.  New results in the packing of equal circles in a square , 1995, Discret. Math..

[13]  D. W. Wang,et al.  A Study on Two Geometric Location Problems , 1988, Information Processing Letters.

[14]  Oleg A. Prokopyev,et al.  The equitable dispersion problem , 2009, Eur. J. Oper. Res..

[15]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[16]  Robert E. Tarjan,et al.  Scheduling Unit-Time Tasks with Arbitrary Release Times and Deadlines , 1981, SIAM J. Comput..

[17]  Alexander Wolff,et al.  A Polynomial-Time Approximation Algorithm for a Geometric Dispersion Problem , 2009, Int. J. Comput. Geom. Appl..

[18]  S. S. Ravi,et al.  Heuristic and Special Case Algorithms for Dispersion Problems , 1994, Oper. Res..