Solution structure of a Nedd4 WW domain–ENaC peptide complex

[1]  A. Vandewalle,et al.  A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Xin Huang,et al.  Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan , 2000, Nature Structural Biology.

[3]  Tony Hunter,et al.  Structural basis for phosphoserine-proline recognition by group IV WW domains , 2000, Nature Structural Biology.

[4]  W. Lim,et al.  Converging on proline: the mechanism of WW domain peptide recognition , 2000, Nature Structural Biology.

[5]  M. Macias,et al.  Structural analysis of WW domains and design of a WW prototype , 2000, Nature Structural Biology.

[6]  P. Leder,et al.  A Novel Pro-Arg Motif Recognized by WW Domains* , 2000, The Journal of Biological Chemistry.

[7]  Julie D. Forman-Kay,et al.  Sequential assignment of proline-rich regions in proteins: Application to modular binding domain complexes , 2000, Journal of biomolecular NMR.

[8]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[9]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[10]  L. Schild,et al.  Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. , 1999, The Journal of clinical investigation.

[11]  S. Grzesiek,et al.  Direct Observation of Hydrogen Bonds in Proteins by Interresidue 3hJNC' Scalar Couplings , 1999 .

[12]  L. Kay,et al.  Determination of the Protein Backbone Dihedral Angle ψ from a Combination of NMR-Derived Cross-Correlation Spin Relaxation Rates , 1998 .

[13]  P. Leder,et al.  WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[15]  K. Takamune,et al.  A family with Liddle's syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel. , 1998, The Journal of clinical endocrinology and metabolism.

[16]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[17]  R. Shimkets,et al.  In vivo phosphorylation of the epithelial sodium channel. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  L. Kay,et al.  A Sensitive Pulse Scheme for Measuring the Backbone Dihedral Angle ψ Based on Cross-correlation Between 13Cα-1Hα Dipolar and Carbonyl Chemical Shift Anisotropy Relaxation Interactions , 1998, Journal of biomolecular NMR.

[19]  M. Welsh,et al.  Electrophysiological and Biochemical Evidence That DEG/ENaC Cation Channels Are Composed of Nine Subunits* , 1998, The Journal of Biological Chemistry.

[20]  L. Kay,et al.  NMR studies of tandem WW domains of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel , 1998 .

[21]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[22]  O. Staub,et al.  Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination , 1997, The EMBO journal.

[23]  R. Shimkets,et al.  The Activity of the Epithelial Sodium Channel Is Regulated by Clathrin-mediated Endocytosis* , 1997, The Journal of Biological Chemistry.

[24]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[25]  A. Sparks,et al.  Identification of Novel Human WW Domain-containing Proteins by Cloning of Ligand Targets* , 1997, The Journal of Biological Chemistry.

[26]  P. Leder,et al.  FBP WW domains and the Abl SH3 domain bind to a specific class of proline‐rich ligands , 1997, The EMBO journal.

[27]  H. Garty,et al.  Epithelial sodium channels: function, structure, and regulation. , 1997, Physiological reviews.

[28]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[29]  J. Bonifacino,et al.  Sequence requirements for the recognition of tyrosine‐based endocytic signals by clathrin AP‐2 complexes. , 1996, The EMBO journal.

[30]  M. Saraste,et al.  Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide , 1996, Nature.

[31]  O. Staub,et al.  WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. , 1996, The EMBO journal.

[32]  L. Schild,et al.  Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. , 1996, The EMBO journal.

[33]  L. Schild,et al.  Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. , 1996, The Journal of clinical investigation.

[34]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[35]  C. M. Adams,et al.  Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel , 1995, Cell.

[36]  L. Schild,et al.  A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[38]  L. Schild,et al.  Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome , 1995, Nature Genetics.

[39]  M. Sudol,et al.  The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Grzesiek,et al.  Multiple-Quantum Line Narrowing for Measurement of H.alpha.-H.beta. J Couplings in Isotopically Enriched Proteins , 1995 .

[41]  L. Kay,et al.  Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. , 1995, Progress in biophysics and molecular biology.

[42]  P. Bork,et al.  The WW domain: a signalling site in dystrophin? , 1994, Trends in biochemical sciences.

[43]  Morris Schambelan,et al.  Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel , 1994, Cell.

[44]  L Serrano,et al.  Characterization of the interaction of natural proline-rich peptides with five different SH3 domains. , 1994, Biochemistry.

[45]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[46]  G W Vuister,et al.  The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR. , 1994, Journal of magnetic resonance. Series B.

[47]  L. Schild,et al.  Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits , 1994, Nature.

[48]  L. Kay,et al.  Simultaneous Acquisition of 15N- and 13C-Edited NOE Spectra of Proteins Dissolved in H2O , 1994 .

[49]  S. Grzesiek,et al.  Measurement of homo- and heteronuclear J couplings from quantitative J correlation. , 1994, Methods in enzymology.

[50]  L. Kay,et al.  Two-dimensional NMR experiments for correlating carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings , 1993 .

[51]  Ad Bax,et al.  Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins , 1993 .

[52]  D. Torchia,et al.  Tautomeric states of the active‐site histidines of phosphorylated and unphosphorylated IIIGlc, a signal‐transducing protein from escherichia coli, using two‐dimensional heteronuclear NMR techniques , 1993, Protein Science.

[53]  A. Bax,et al.  Measurement of long-range 13C-13C J couplings in a 20-kDa protein-peptide complex , 1992 .

[54]  S. Kumar,et al.  Identification of a set of genes with developmentally down-regulated expression in the mouse brain. , 1992, Biochemical and biophysical research communications.

[55]  W. M. Westler,et al.  A relational database for sequence-specific protein NMR data , 1991, Journal of biomolecular NMR.