Comparison of different dispersion models for single layer optical thin film index determination

Abstract We here determine the optical properties of different single-layer thin films containing Ta 2 O 5 , Si, Indium Tin Oxide and Au in the ultraviolet–visible and near infrared ranges. More specifically, we deduce the complex refractive index and thickness from the reflectance and transmittance measured using a spectrophotometer at normal incidence. One major difficulty is to find an appropriate selection of dispersion laws for various types of material (dielectric, semiconductors, and metals). For this purpose, a number of models have been investigated from a theoretical point of view in consideration of the Kramers–Kronig relation. These include the Forouhi–Bloomer model, combined with the modified Drude, Tauc–Lorentz and multiple-oscillator Tauc–Lorentz models. A global optimization procedure had to be employed because of the large number of parameters (from 3 to 15) required to describe the optical dispersion laws. The calculated reflectance and transmittance are in good agreement with experimental data and the complex refractive index is consistent with our knowledge and that already reported.

[1]  C. Sanjeeviraja,et al.  Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation , 2010 .

[2]  C. Chien,et al.  The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method , 2005 .

[3]  Hei Wong,et al.  Electronic structure and charge transport properties of amorphous Ta2O5 films , 2008 .

[4]  Karen Hendrix,et al.  Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon. , 2011, Applied optics.

[5]  Rui M. Almeida,et al.  Morphological and optical properties of silicon thin films by PLD , 2009 .

[6]  R. Azzam Return-path Ellipsometry and a Novel Normal-incidence Null Ellipsometer (NINE) , 1977 .

[7]  G. DeBell,et al.  Optical parameters of oxide films typically used in optical coating production. , 2011, Applied optics.

[8]  Claude Amra,et al.  Index determination of opaque and semitransparent metallic films: application to light absorbers. , 2002, Applied optics.

[9]  J. M. Martínez,et al.  Estimation of the thickness and the optical parameters of several stacked thin films using optimization. , 2008, Applied optics.

[10]  Vladimir I. Merkulov,et al.  Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry , 2000 .

[11]  Bernhard von Blanckenhagen,et al.  Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials. , 2002, Applied optics.

[12]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[13]  Rusli,et al.  DETERMINATION OF THE OPTICAL-CONSTANTS AND THICKNESS OF THIN-FILMS ON SLIGHTLY ABSORBING SUBSTRATES , 1995 .

[14]  L. E. Regalado,et al.  Determination of (n,k) for absorbing thin films using reflectance measurements. , 1988, Applied optics.

[15]  J. K. Erwin,et al.  Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements. , 2001, Applied optics.

[16]  Jinsong Gao,et al.  Effect of the oxygen flow on the properties of ITO thin films deposited by ion beam assisted deposition (IBAD) , 2008 .

[17]  Chih-Cheng Chou,et al.  Preparation and optical properties of Ta2O5-x thin films , 2008 .

[18]  Bum Ku Rhee,et al.  Simultaneous determination of thickness and optical constants of polymer thin film by analyzing transmittance. , 2002, Applied optics.

[19]  David L. Greenaway,et al.  Optical properties and band structure of semiconductors , 1968 .

[20]  Tibor Csendes,et al.  Nonlinear Parameter Estimation by Global Optimization - Efficiency and reliability , 1989, Acta Cybern..

[21]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[22]  M. Tilsch,et al.  Optical interference coatings design contest 2004. , 2006, Applied optics.

[23]  Karen Hendrix,et al.  Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter. , 2008, Applied optics.

[24]  Influence of Au underlayer thickness on the electro-optical properties of ITO/Au layered films deposited by magnetron sputtering on unheated polycarbonate substrates , 2008 .

[25]  Bloomer,et al.  Optical properties of crystalline semiconductors and dielectrics. , 1988, Physical review. B, Condensed matter.

[26]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[27]  W. McGahan,et al.  Spectroscopic Ellipsometry and Reflectometry: A User's Guide , 1999 .

[28]  Giovanni Saggio,et al.  An integrated optical method for measuring the thickness and refractive indexof birefringent thin films , 1997 .

[29]  Limei Lin,et al.  Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data , 2007 .

[30]  F. Tangherlini,et al.  Optical Constants of Silver, Gold, Copper, and Aluminum. II. The Index of Refraction n , 1954 .

[31]  Genshui Wang,et al.  Optical characterization of ferroelectric Bi3.25La0.75Ti3O12 thin films , 2004 .

[32]  L. Schulz,et al.  The Optical Constants of Silver, Gold, Copper, and Aluminum. I. The Absorption Coefficient k , 1954 .

[33]  Yong Liu,et al.  Modification on Forouhi and Bloomer model for the optical properties of amorphous silicon thin films , 2007 .

[34]  J A Dobrowolski,et al.  Influence of small inhomogeneities on the spectral characteristics of single thin films. , 1997, Applied optics.

[35]  H. Wolter Zur Optik dünner Metallfilme , 1937 .

[36]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[37]  Tetsuo Iwata,et al.  Measurements of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance. , 2008, Applied optics.

[38]  A. Tikhonravov,et al.  Efficient refinement algorithm for the synthesis of inhomogeneous optical coatings. , 1997, Applied optics.

[39]  Razvigor Ossikovski,et al.  Measurement of the absorption edge of thick transparent substrates using the incoherent reflection model and spectroscopic UV)visible)near IR ellipsometry , 1998 .

[40]  Forouhi-Bloomer and Tauc-Lorentz optical dispersions applied using spectroscopic ellipsometry to plasma-deposited fluorocarbon films , 2007 .

[41]  K. Vedam,et al.  Simultaneous determination of refractive index, its dispersion and depth-profile of magnesium oxide thin film by spectroscopic ellipsometry. , 1989, Applied optics.

[42]  Avi Bendavid,et al.  Morphology and optical properties of gold thin films prepared by filtered arc deposition , 1999 .

[43]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[44]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[45]  Xiaomin Li,et al.  Synthesis and optical properties of tantalum oxide films prepared by ionized plasma-assisted pulsed laser deposition , 2008 .

[46]  J A Dobrowolski,et al.  Determination of optical constants of thin film coating materials based on inverse synthesis. , 1982, Applied optics.

[47]  O. Lytvyn,et al.  Thermally induced changes in thin gold films detected by polaritonic ellipsometry , 2008 .

[48]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[49]  C. Tien Influence of ejection angle on residual stress and optical properties of sputtering Ta2O5 thin films , 2008 .

[50]  Joseph George,et al.  Electrical and optical properties of electron beam evaporated ITO thin films , 2000 .

[51]  G. Niklasson,et al.  Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles , 2003 .