Adversarial-residual-coarse-graining: Applying machine learning theory to systematic molecular coarse-graining.

We utilize connections between molecular coarse-graining (CG) approaches and implicit generative models in machine learning to describe a new framework for systematic molecular CG. Focus is placed on the formalism encompassing generative adversarial networks. The resulting method enables a variety of model parameterization strategies, some of which show similarity to previous CG methods. We demonstrate that the resulting framework can rigorously parameterize CG models containing CG sites with no prescribed connection to the reference atomistic system (termed virtual sites); however, this advantage is offset by the lack of a closed-form expression for the CG Hamiltonian at the resolution obtained after integration over the virtual CG sites. Computational examples are provided for cases in which these methods ideally return identical parameters as relative entropy minimization CG but where traditional relative entropy minimization CG optimization equations are not applicable.

[1]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[2]  Pritam Ganguly,et al.  Systematic coarse-graining methods for soft matter simulations - a review , 2013 .

[3]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[4]  Johann Evelio Bedoya-Cardona Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo , 2020 .

[5]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[6]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[7]  Joseph F. Rudzinski,et al.  Bottom-Up Coarse-Graining of Peptide Ensembles and Helix-Coil Transitions. , 2015, Journal of chemical theory and computation.

[8]  Anand Srivastava,et al.  A Hybrid Approach for Highly Coarse-grained Lipid Bilayer Models. , 2013, Journal of chemical theory and computation.

[9]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[10]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[11]  Yu Cheng,et al.  Sobolev GAN , 2017, ICLR.

[12]  Gregory A Voth,et al.  Multiscale coarse-graining and structural correlations: connections to liquid-state theory. , 2007, The journal of physical chemistry. B.

[13]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[14]  Richard Lavery,et al.  Significance of Molecular Dynamics Simulations for Life Sciences , 2014 .

[15]  Martin J. Wainwright,et al.  Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization , 2008, IEEE Transactions on Information Theory.

[16]  Vagelis Harmandaris,et al.  Parameterization of Coarse-Grained Molecular Interactions through Potential of Mean Force Calculations and Cluster Expansion Techniques , 2016, Entropy.

[17]  Parul Parashar,et al.  Neural Networks in Machine Learning , 2014 .

[18]  Anil A. Bharath,et al.  Adversarial Training for Sketch Retrieval , 2016, ECCV Workshops.

[19]  Gregory A. Voth,et al.  Extending the range and physical accuracy of coarse-grained models: Order parameter dependent interactions. , 2017, The Journal of chemical physics.

[20]  Jim Pfaendtner,et al.  Systematic multiscale parameterization of heterogeneous elastic network models of proteins. , 2008, Biophysical journal.

[21]  Yang Yu,et al.  Unsupervised Representation Learning with Deep Convolutional Neural Network for Remote Sensing Images , 2017, ICIG.

[22]  Aatto Laaksonen,et al.  Systematic hierarchical coarse-graining with the inverse Monte Carlo method. , 2015, The Journal of chemical physics.

[23]  Marc Baaden,et al.  Coarse-grain modelling of protein-protein interactions. , 2013, Current opinion in structural biology.

[24]  Alexey Savelyev,et al.  Molecular renormalization group coarse-graining of polymer chains: application to double-stranded DNA. , 2009, Biophysical journal.

[25]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[26]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[27]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[28]  M Scott Shell,et al.  Coarse-graining errors and numerical optimization using a relative entropy framework. , 2011, The Journal of chemical physics.

[29]  M Scott Shell,et al.  A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly. , 2012, The journal of physical chemistry. B.

[30]  Eric Vanden-Eijnden,et al.  On-the-fly free energy parameterization via temperature accelerated molecular dynamics. , 2012, Chemical physics letters.

[31]  Shakir Mohamed,et al.  Learning in Implicit Generative Models , 2016, ArXiv.

[32]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[33]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[34]  Toni Giorgino,et al.  Identification of slow molecular order parameters for Markov model construction. , 2013, The Journal of chemical physics.

[35]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  William L. Jorgensen,et al.  1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. , 2017, The journal of physical chemistry. B.

[37]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[38]  Hugo Larochelle,et al.  Efficient Learning of Deep Boltzmann Machines , 2010, AISTATS.

[39]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Sebastian Nowozin,et al.  DISCO Nets : DISsimilarity COefficients Networks , 2016, NIPS.

[41]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[42]  K. Kremer,et al.  C-IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids. , 2016, The Journal of chemical physics.

[43]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[44]  J. P. Grossman,et al.  Biomolecular simulation: a computational microscope for molecular biology. , 2012, Annual review of biophysics.

[45]  F. Stillinger Effective Pair Interactions in Liquids. Water , 1970 .

[46]  W. Noid,et al.  Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures. , 2016, The Journal of chemical physics.

[47]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[48]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[49]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[50]  Ilias Bilionis,et al.  A stochastic optimization approach to coarse-graining using a relative-entropy framework. , 2013, The Journal of chemical physics.

[51]  G. Voth,et al.  Coarse-graining involving virtual sites: Centers of symmetry coarse-graining. , 2019, The Journal of chemical physics.

[52]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[53]  Joseph F Rudzinski,et al.  Coarse-graining entropy, forces, and structures. , 2011, The Journal of chemical physics.

[54]  W G Noid,et al.  Perspective: Coarse-grained models for biomolecular systems. , 2013, The Journal of chemical physics.

[55]  F. Noé,et al.  Kinetic distance and kinetic maps from molecular dynamics simulation. , 2015, Journal of chemical theory and computation.

[56]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[57]  W G Noid,et al.  Generalized Yvon-Born-Green theory for molecular systems. , 2009, Physical review letters.

[58]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[59]  Benoît Roux,et al.  The Theory of Ultra-Coarse-Graining. 1. General Principles. , 2013, Journal of chemical theory and computation.

[60]  Zoubin Ghahramani,et al.  Training generative neural networks via Maximum Mean Discrepancy optimization , 2015, UAI.

[61]  F. Noé,et al.  Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling. , 2016, Journal of chemical theory and computation.

[62]  Mark D. Reid,et al.  Information, Divergence and Risk for Binary Experiments , 2009, J. Mach. Learn. Res..

[63]  Frank Noé,et al.  Machine Learning of Coarse-Grained Molecular Dynamics Force Fields , 2018, ACS central science.

[64]  Gregory A Voth,et al.  The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. , 2008, The Journal of chemical physics.

[65]  Christine Peter,et al.  Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models. , 2017, Journal of chemical theory and computation.

[66]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[67]  Aleksander E. P. Durumeric,et al.  On the representability problem and the physical meaning of coarse-grained models. , 2016, The Journal of chemical physics.

[68]  Xiaoyu Chen,et al.  IBIsCO: A molecular dynamics simulation package for coarse‐grained simulation , 2011, J. Comput. Chem..

[69]  Pascal Vincent,et al.  GSNs : Generative Stochastic Networks , 2015, ArXiv.

[70]  Gábor Csányi,et al.  Many-Body Coarse-Grained Interactions Using Gaussian Approximation Potentials. , 2016, The journal of physical chemistry. B.

[71]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[72]  M Scott Shell,et al.  The relative entropy is fundamental to multiscale and inverse thermodynamic problems. , 2008, The Journal of chemical physics.

[73]  James J. Little,et al.  Play and Learn: Using Video Games to Train Computer Vision Models , 2016, BMVC.

[74]  Eric J. Martin,et al.  In silico generation of novel, drug-like chemical matter using the LSTM neural network , 2017, ArXiv.

[75]  G. Voth,et al.  Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models. , 2018, The Journal of chemical physics.

[76]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[77]  Erwin Laure,et al.  Solving Software Challenges for Exascale , 2014, Lecture Notes in Computer Science.

[78]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[79]  David Lopez-Paz,et al.  Geometrical Insights for Implicit Generative Modeling , 2017, Braverman Readings in Machine Learning.

[80]  Peter Robinson,et al.  Learning an appearance-based gaze estimator from one million synthesised images , 2016, ETRA.

[81]  Linfeng Zhang,et al.  DeePCG: Constructing coarse-grained models via deep neural networks. , 2018, The Journal of chemical physics.

[82]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[83]  Lukas Vlcek,et al.  Rigorous force field optimization principles based on statistical distance minimization. , 2015, The Journal of chemical physics.

[84]  Gregory A Voth,et al.  Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence. , 2015, The Journal of chemical physics.

[85]  Markus Schöberl,et al.  Predictive coarse-graining , 2016, J. Comput. Phys..

[86]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[87]  Bryan C. Daniels,et al.  Perspective: Sloppiness and emergent theories in physics, biology, and beyond. , 2015, The Journal of chemical physics.

[88]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[89]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[90]  Tanmoy Sanyal,et al.  Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation. , 2016, The Journal of chemical physics.

[91]  H. Chatley Cohesion , 1921, Nature.

[92]  G. Voth,et al.  Solvent Free Ionic Solution Models from Multiscale Coarse-Graining. , 2013, Journal of chemical theory and computation.

[93]  Gregory A Voth,et al.  Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. , 2012, Biophysical journal.

[94]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .