Solid State Carbon-13 NMR Studies of Elastomers. XL N-t-Butyl Benzothiazole Sulfenimide Accelerated Sulfur Vulcanization of cis-Polyisoprene at 75 MHz

Abstract The network structure of TBSI-accelerated vulcanization of cis-polyisoprene was studied using C-13 solid-state NMR. The initial crosslink products consisted of A1c (cis) and A2c (cis) polysulfides. As the percent cure is increased, the A1c and A2c structures reduce in rank to monosulfides, and polysulfidic B1c (cis) and B1t (trans) structures are formed. During the maturation period C1c (cis) polysulfidic structures are also formed. The percent of sulfurization was shown to vary directly with sulfur concentration, while the efficiency of sulfurization (crosslink/cyclic-structure ratio) was shown to vary with accelerator content. TBSI-accelerated vulcanization was found to be more inefficient (lower crosslink/cyclic-structure ratio) than TBBS-accelerated vulcanization during the initial cure region. However, this results in shorter sulfur chains, which decreases the reactivity of TBSI vulcanizates as compared to TBBS vulcanizates during the reversion regime.