Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations

Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis. Spectral phasor analysis allows unmixing fluorescence microscopy images, but it requires user involvement and has a limited number of labels that can be analyzed and displayed. Here the authors present a semi-automated solution to visualise multiple spectral components of hyperspectral fluorescence images, simultaneously.

[1]  Akihiro Urasaki,et al.  Functional Dissection of the Tol2 Transposable Element Identified the Minimal cis-Sequence and a Highly Repetitive Sequence in the Subterminal Region Essential for Transposition , 2006, Genetics.

[2]  Subhasis Chaudhuri,et al.  Visualization of Hyperspectral Images Using Bilateral Filtering , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Enrico Gratton,et al.  Spectral phasor analysis of Pyronin Y labeled RNA microenvironments in living cells , 2012, Biomedical optics express.

[4]  K. Kawakami,et al.  A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. , 2004, Developmental cell.

[5]  AbdiHervé,et al.  Principal Component Analysis , 2010, Essentials of Pattern Recognition.

[6]  E. Gratton,et al.  The phasor approach to fluorescence lifetime imaging analysis. , 2008, Biophysical journal.

[7]  Thibaud Taillefumier Principal Component , 2020, Definitions.

[8]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Tamily A Weissman,et al.  Brainbow: New Resources and Emerging Biological Applications for Multicolor Genetic Labeling and Analysis , 2015, Genetics.

[10]  E. Gratton,et al.  Spectral Phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR. , 2013, Methods and applications in fluorescence.

[11]  Steven K. Rogers,et al.  Perceptual-based image fusion for hyperspectral data , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  Scott E. Fraser,et al.  Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging , 2017, Investigative ophthalmology & visual science.

[13]  N. Ramanujam,et al.  Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. , 2005, Cancer research.

[14]  Yasushi Hiraoka,et al.  Multispectral imaging fluorescence microscopy for living cells. , 2002, Cell structure and function.

[15]  Rowayda A. Sadek,et al.  SVD Based Image Processing Applications: State of The Art, Contributions and Research Challenges , 2012, ArXiv.

[16]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[17]  Alex J Walsh,et al.  Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. , 2014, Cancer research.

[18]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[19]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[20]  Bernhard Schölkopf,et al.  A Primer on Kernel Methods , 2004 .

[21]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[22]  Scott H. Randell,et al.  Basal cells as stem cells of the mouse trachea and human airway epithelium , 2009, Proceedings of the National Academy of Sciences.

[23]  Sos S. Agaian,et al.  A New Measure of Image Enhancement , 2000 .

[24]  Le A. Trinh,et al.  A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. , 2011, Genes & development.

[25]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[26]  Scott E Fraser,et al.  Multiphoton excitation spectra in biological samples. , 2003, Journal of biomedical optics.

[27]  A. Diaspro,et al.  Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps , 2018, Communications Biology.

[28]  Fu-Jen Kao,et al.  Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide , 2009, Asia Communications and Photonics conference and Exhibition.

[29]  Scott H Randell,et al.  Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling , 2010, Disease Models & Mechanisms.

[30]  Ullrich Köthe,et al.  Ilastik: Interactive learning and segmentation toolkit , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[32]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[33]  Enrico Gratton,et al.  Digital parallel frequency-domain spectroscopy for tissue imaging , 2012, Journal of biomedical optics.

[34]  L. Sironi,et al.  μMAPPS: a novel phasor approach to second harmonic analysis for in vitro-in vivo investigation of collagen microstructure , 2017, Scientific Reports.

[35]  C. Moreau [Slices of life]. , 1989, Revue de l'infirmiere.

[36]  E. Gratton,et al.  Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue , 2011, Proceedings of the National Academy of Sciences.

[37]  J. Mansfield,et al.  Multispectral imaging in biology and medicine: Slices of life , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[38]  Laura Marcu,et al.  Endoscopic Fluorescence Lifetime Imaging for In Vivo Intraoperative Diagnosis of Oral Carcinoma , 2013, Microscopy and Microanalysis.

[39]  Yifan Zhang,et al.  Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Alberto Diaspro,et al.  Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles , 2016, Biophysical journal.

[41]  W. Goessling,et al.  Haematopoietic stem cells show their true colours , 2016, Nature Cell Biology.

[42]  N. Ramanujam,et al.  In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia , 2007, Proceedings of the National Academy of Sciences.

[43]  William J. Emery,et al.  Pairwise-Distance-Analysis-Driven Dimensionality Reduction Model with Double Mappings for Hyperspectral Image Visualization , 2015, Remote. Sens..

[44]  Sos S. Agaian,et al.  Transform Coefficient Histogram-Based Image Enhancement Algorithms Using Contrast Entropy , 2007, IEEE Transactions on Image Processing.

[45]  Yann Le Franc,et al.  Multiplex Cell and Lineage Tracking with Combinatorial Labels , 2014, Neuron.

[46]  Enrico Gratton,et al.  Fit-free analysis of fluorescence lifetime imaging data using the phasor approach , 2018, Nature Protocols.

[47]  J. Livet,et al.  Multicolor Brainbow imaging in zebrafish. , 2011, Cold Spring Harbor protocols.

[48]  Guillaume Labroille,et al.  Multicolor two-photon tissue imaging by wavelength mixing , 2012, Nature Methods.

[49]  Howland D. T. Jones,et al.  Hyperspectral confocal microscope. , 2006, Applied optics.

[50]  Zeno Lavagnino,et al.  Quantitative Assessment of Fluorescent Proteins , 2016, Nature Methods.

[51]  Paolo P. Provenzano,et al.  Fluorescence Lifetime Imaging of Endogenous Fluorophores in Histopathology Sections Reveals Differences Between Normal and Tumor Epithelium in Carcinoma In Situ of the Breast , 2009, Cell Biochemistry and Biophysics.

[52]  Alberto Diaspro,et al.  Encoding and decoding spatio-temporal information for super-resolution microscopy , 2015, Nature Communications.

[53]  J. Lakowicz,et al.  Fluorescence lifetime imaging of free and protein-bound NADH. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[55]  Subhasis Chaudhuri,et al.  A Bayesian approach to visualization-oriented hyperspectral image fusion , 2013, Inf. Fusion.

[56]  Hans C Gerritsen,et al.  Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. , 2012, Optics express.

[57]  Paul McKenzie,et al.  If you are not one of them you feel out of place: understanding divisions in a Northern Irish town , 2017 .

[58]  Francesco Cutrale,et al.  Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging , 2017, Nature Methods.

[59]  R. Clegg,et al.  Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes , 2005, Journal of Fluorescence.

[60]  M E Dickinson,et al.  Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. , 2001, BioTechniques.

[61]  Sabine Süsstrunk,et al.  Measuring colorfulness in natural images , 2003, IS&T/SPIE Electronic Imaging.

[62]  Yuval Garini,et al.  Spectral imaging: Principles and applications , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[63]  J. Scott Tyo,et al.  Principal-components-based display strategy for spectral imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[64]  S. Fraser,et al.  A transgenic quail model that enables dynamic imaging of amniote embryogenesis , 2015, Development.

[65]  Shihong Du,et al.  Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[66]  J. Holst,et al.  Rapid analysis of T-cell selection in vivo using T cell–receptor retrogenic mice , 2006 .

[67]  Sos S. Agaian,et al.  No reference color image contrast and quality measures , 2013, IEEE Transactions on Consumer Electronics.

[68]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Puliafito,et al.  Multicolor Cell Barcoding Technology for Long-Term Surveillance of Epithelial Regeneration in Zebrafish. , 2016, Developmental cell.

[70]  A. Diaspro,et al.  Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures , 2018, Nature Communications.

[71]  Benjamin Schmid,et al.  Hyperspectral light sheet microscopy , 2015, Nature Communications.

[72]  Frank J Vergeldt,et al.  Multi-component quantitative magnetic resonance imaging by phasor representation , 2017, Scientific Reports.

[73]  H. Abdi,et al.  Principal component analysis , 2010 .

[74]  Jean-Baptiste Galey,et al.  Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing , 2017, Scientific Reports.

[75]  Maya R. Gupta,et al.  Design goals and solutions for display of hyperspectral images , 2005, IEEE International Conference on Image Processing 2005.

[76]  Joe T. Sharick,et al.  Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon , 2018, Scientific Reports.

[77]  J. Holst,et al.  Rapid analysis of T-cell selection in vivo using T cell–receptor retrogenic mice , 2006, Nature Methods.

[78]  S. Megason,et al.  In toto imaging of embryogenesis with confocal time-lapse microscopy. , 2009, Methods in molecular biology.

[79]  Michael W. Davidson,et al.  Applying systems-level spectral imaging and analysis to reveal the organelle interactome , 2017, Nature.