Direct synthesis of amorphous coordination polymers and metal–organic frameworks

[1]  Jun Ge,et al.  Multienzyme System in Amorphous Metal-Organic Frameworks for Intracellular Lactate Detection. , 2022, Nano letters.

[2]  F. Caruso,et al.  Metal Ion-Directed Functional Metal-Phenolic Materials. , 2022, Chemical reviews.

[3]  S. Furukawa,et al.  Assembling metal-organic cages as porous materials. , 2022, Chemical Society reviews.

[4]  O. Farha,et al.  Rapid Generation of Metal-Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. , 2022, Journal of the American Chemical Society.

[5]  Siyoung Q. Choi,et al.  Large‐Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal–Organic Framework Thin Films via a Microfluidic‐Based Solution Shearing Process (Adv. Mater. 12/2022) , 2022, Advanced Materials.

[6]  P. Couvreur,et al.  Toxicity of metal-organic framework nanoparticles: from essential analyses to potential applications. , 2022, Chemical Society reviews.

[7]  Timothy L. Easun,et al.  MOFs in the time domain , 2021, Nature Reviews Chemistry.

[8]  Fukun Bi,et al.  Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: A review and perspectives , 2021, Surfaces and Interfaces.

[9]  H. Miyasaka Charge manipulation in metal–organic frameworks: Toward designer functional molecular materials , 2021, Bulletin of the Chemical Society of Japan.

[10]  Y. Kubota,et al.  Fabrication of Integrated Cu-Based Nanoparticles/Amorphous Metal-Organic Framework by Facile Spray-Drying Method: Highly Enhanced CO2 Hydrogenation Activity for Methanol Synthesis. , 2021, Angewandte Chemie.

[11]  Zhichu Xiang,et al.  Coordination-driven assembly of proteins and nucleic acids in a single architecture for carrier-free intracellular co-delivery , 2021 .

[12]  Katsuhiko Ariga,et al.  Nanoarchitectonics: what's coming next after nanotechnology? , 2021, Nanoscale horizons.

[13]  C. Ashworth Characterizing amorphous MOFs , 2021, Nature Reviews Chemistry.

[14]  A. Cooper,et al.  The changing state of porous materials , 2021, Nature Materials.

[15]  Yuliang Zhao,et al.  Self-Assembly of Copper-DNAzyme Nanohybrids for Dual-Catalytic Tumor Therapy. , 2021, Angewandte Chemie.

[16]  P. Král,et al.  Three-step nucleation of metal–organic framework nanocrystals , 2021, Proceedings of the National Academy of Sciences.

[17]  M. Buehler,et al.  Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties , 2021, Nature Reviews Materials.

[18]  Nobuhiko Hosono Design of Porous Coordination Materials with Dynamic Properties , 2021 .

[19]  Y. Zhao,et al.  Topological Distortion Driven Amorphous Spherical MOFs for High Quality Single-Mode Microlasers. , 2020, Angewandte Chemie.

[20]  Gregory S. Day,et al.  Destruction of Metal-Organic Frameworks: Positive and Negative Aspects of Stability and Lability. , 2020, Chemical reviews.

[21]  Dapeng Liu,et al.  Recent development of amorphous metal coordination polymers for cancer therapy. , 2020, Acta biomaterialia.

[22]  D. Sholl,et al.  A Database of Porous Rigid Amorphous Materials , 2020 .

[23]  Shaohua Liu,et al.  General Construction of 2D Ordered Mesoporous Iron-Based Metal-Organic Nanomeshes. , 2020, Small.

[24]  Joseph J. Richardson,et al.  Programmable Permeability of Metal–Phenolic Network Microcapsules , 2020 .

[25]  L. Mai,et al.  In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction , 2020 .

[26]  Q. Ma,et al.  Tuning the adsorption selectivity of ZIF-8 by amorphization. , 2020, Chemistry.

[27]  A. El Kadib,et al.  Polysaccharide templated biomimetic growth of hierarchically porous metal-organic frameworks , 2020 .

[28]  Joseph J. Richardson,et al.  Polyphenol-Mediated Assembly for Particle Engineering. , 2020, Accounts of chemical research.

[29]  Ana E. Platero‐Prats,et al.  Applications of pair distribution function analyses to the emerging field of non-ideal metal-organic framework materials. , 2020, Nanoscale.

[30]  S. Kitagawa,et al.  New Dimension of Coordination Polymers and Metal-Organic Frameworks toward Functional Glasses and Liquids. , 2020, Angewandte Chemie.

[31]  S. Sen,et al.  Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses , 2020, Science.

[32]  Xiaodang Zhang,et al.  Rational modulating electronegativity of substituents in amorphous metal-organic frameworks for water oxidation catalysis , 2020 .

[33]  M. Fedin,et al.  Mitigation of Pressure-Induced Amorphization in Metal-Organic Framework ZIF-8 upon EPR control. , 2020, ACS applied materials & interfaces.

[34]  Joseph J. Richardson,et al.  Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. , 2020, Nano letters.

[35]  Jovany G. Merham,et al.  Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein-Metal-Organic Frameworks. , 2020, Journal of the American Chemical Society.

[36]  F. Caruso,et al.  Self-Assembly of a Metal-Phenolic Sorbent for Broad-Spectrum Metal Sequestration. , 2020, ACS applied materials & interfaces.

[37]  Joseph J. Richardson,et al.  Ordered Mesoporous Metal-Phenolic Network Particles. , 2019, Journal of the American Chemical Society.

[38]  Wenguang Tu,et al.  Rational Synthesis of Amorphous Iron‐Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield , 2019, Angewandte Chemie.

[39]  A. Goodwin,et al.  Designing disorder into crystalline materials , 2019, Nature Reviews Chemistry.

[40]  R. Zare,et al.  Packaging and delivering enzymes by amorphous metal-organic frameworks , 2019, Nature Communications.

[41]  M. Kraft,et al.  Rational Synthesis of Amorphous Iron-Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with nearly 100% Yield. , 2019, Angewandte Chemie.

[42]  Lele Li,et al.  Metal-DNA Coordination-Driven Self-Assembly: A Conceptual Methodology to Expand the Repertoire of DNA Nanobiotechnology. , 2019, Chemistry.

[43]  Meili Ding,et al.  Improving MOF stability: approaches and applications , 2019, Chemical science.

[44]  V. Rathod,et al.  Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review , 2019, Coordination Chemistry Reviews.

[45]  Joseph J. Richardson,et al.  Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. , 2019, ACS nano.

[46]  Li Cao,et al.  Metal-coordinated sub-10 nm membranes for water purification , 2019, Nature Communications.

[47]  Joseph J. Richardson,et al.  Oxidation-Mediated Kinetic Strategies for Engineering Metal-Phenolic Networks. , 2019, Angewandte Chemie.

[48]  Ki‐Hyun Kim,et al.  Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. , 2019, Environmental research.

[49]  Sung Ho Park,et al.  Versatile Amorphous Structures of Phosphonate Metal−Organic Framework/Alginate Composite for Tunable Sieving of Ions , 2019, Advanced Functional Materials.

[50]  Xiujian Zhao,et al.  Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues , 2019, Journal of the American Ceramic Society.

[51]  M. Stevens,et al.  In vivo biocompatibility and immunogenicity of metal–phenolic gelation , 2019, Chemical science.

[52]  H. Zeng,et al.  Synthetic Chemistry and Multifunctionality of an Amorphous Ni-MOF-74 Shell on a Ni/SiO2 Hollow Catalyst for Efficient Tandem Reactions , 2019, Chemistry of Materials.

[53]  Joseph J. Richardson,et al.  Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks , 2019, Nature Communications.

[54]  Joseph J. Richardson,et al.  Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments , 2019, ACS Sustainable Chemistry & Engineering.

[55]  Joseph J. Richardson,et al.  Tuning the Mechanical Behavior of Metal-Phenolic Networks through Building Block Composition. , 2019, ACS applied materials & interfaces.

[56]  Khaled M. Elsabawy,et al.  Synthesis of newly wings like structure non-crystalline Ni++-1,3,5-tribenzyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione coordinated MOFs for CO2-Capture , 2019, Journal of Molecular Structure.

[57]  Wenxin Zhu,et al.  Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal , 2019, Journal of Materials Chemistry A.

[58]  Sihai Yang,et al.  Porous metal–organic frameworks as emerging sorbents for clean air , 2019, Nature Reviews Chemistry.

[59]  Lin Xu,et al.  Low-Crystalline Bimetallic Metal–Organic Framework Electrocatalysts with Rich Active Sites for Oxygen Evolution , 2019, ACS Energy Letters.

[60]  B. Iversen,et al.  The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation. , 2019, Chemistry.

[61]  Li-ping Zhu,et al.  Ultrathin nanofilm with tailored pore size fabricated by metal-phenolic network for precise and rapid molecular separation , 2018, Separation and Purification Technology.

[62]  H. Pang,et al.  Superlong Single-Crystal Metal-Organic Framework Nanotubes. , 2018, Journal of the American Chemical Society.

[63]  M. Cazacu,et al.  Hydrophobic, amorphous metal–organic network readily prepared by complexing the aluminum ion with a siloxane spaced dicarboxylic acid in aqueous medium , 2018, Journal of Applied Polymer Science.

[64]  S. Kitagawa,et al.  Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages. , 2018, Accounts of chemical research.

[65]  Z. Zhuang,et al.  Shape control of core–shell MOF@MOF and derived MOF nanocages via ion modulation in a one-pot strategy , 2018 .

[66]  S. Horike,et al.  Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks , 2018, Nature Reviews Materials.

[67]  Hongyan Wang,et al.  In situ growth of ultrathin Co-MOF nanosheets on α-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation , 2018, Solar Energy.

[68]  Wei Zhang,et al.  Effect of surface charge status of amorphous porous coordination polymer particles on the adsorption of organic dyes from an aqueous solution. , 2018, Journal of colloid and interface science.

[69]  Joseph J. Richardson,et al.  Self-Assembly of Nano- to Macroscopic Metal–Phenolic Materials , 2018, Chemistry of Materials.

[70]  Y. Yue,et al.  Metal-organic framework glasses with permanent accessible porosity , 2018, Nature Communications.

[71]  K. Huber,et al.  Insight into Fast Nucleation and Growth of Zeolitic Imidazolate Framework-71 by In Situ Static Light Scattering at Variable Temperature and Kinetic Modeling , 2018, Crystal Growth & Design.

[72]  Amy M. Peterson,et al.  Enhanced Water Retention Maintains Energy Dissipation in Dehydrated Metal-Coordinate Polymer Networks: Another Role for Fe-Catechol Cross-Links? , 2018 .

[73]  J. R. Schmidt,et al.  In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. , 2018, Chemical reviews.

[74]  J. D. De Yoreo,et al.  Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. , 2018, Nanoscale.

[75]  Yongfeng Hu,et al.  Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces , 2017 .

[76]  A. Rawal,et al.  Zirconium phosphonate sorbents with tunable structure and function , 2017 .

[77]  Juewen Liu,et al.  Self‐Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications , 2017 .

[78]  Lin Xu,et al.  Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO2 /Co Nanocubes for Highly Reversible Lithium Storage. , 2017, Small.

[79]  C. Serre,et al.  The new age of MOFs and of their porous-related solids. , 2017, Chemical Society reviews.

[80]  X. Lou,et al.  Coordination Polymers Derived General Synthesis of Multishelled Mixed Metal‐Oxide Particles for Hybrid Supercapacitors , 2017, Advanced materials.

[81]  C. Serre,et al.  Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. , 2017, Journal of materials chemistry. B.

[82]  Yue Ma,et al.  Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing , 2017 .

[83]  Joseph J. Richardson,et al.  Biomimetic mineralization of metal-organic frameworks around polysaccharides. , 2017, Chemical communications.

[84]  Wei Liu,et al.  Self‐Limiting Growth Nanoscale Coordination Polymers for Fluorescence and Magnetic Resonance Dual‐Modality Imaging , 2016 .

[85]  D. Xiao,et al.  A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures , 2016 .

[86]  U. Schubert,et al.  Synthesis and characterization of metallo-supramolecular polymers. , 2016, Chemical Society reviews.

[87]  R. Selegård,et al.  Zinc-Triggered Hierarchical Self-Assembly of Fibrous Helix–Loop–Helix Peptide Superstructures for Controlled Encapsulation and Release , 2016 .

[88]  D. L. Bryce,et al.  From discrete molecule, to polymer, to MOF: mapping the coordination chemistry of Cd(II) using (113)Cd solid-state NMR. , 2016, Chemical communications.

[89]  Xiao Feng,et al.  Shaping of Metal-Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. , 2016, Journal of the American Chemical Society.

[90]  Guangyu Zhang,et al.  One-Step Assembly of Phytic Acid Metal Complexes for Superhydrophilic Coatings. , 2016, Angewandte Chemie.

[91]  F. Kapteijn,et al.  Evidence for a chemical clock in oscillatory formation of UiO-66 , 2016, Nature Communications.

[92]  D. Pontoni,et al.  Insight into Fast Nucleation and Growth of Zeolitic Imidazolate Framework-71 by In Situ Time-Resolved Light and X-ray Scattering Experiments , 2016 .

[93]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[94]  Jared B. DeCoste,et al.  Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. , 2016, Journal of the American Chemical Society.

[95]  M. Oh,et al.  Morphological and Structural Evolutions of Metal-Organic Framework Particles from Amorphous Spheres to Crystalline Hexagonal Rods. , 2015, Angewandte Chemie.

[96]  A. Cheetham,et al.  Amorphous metal-organic frameworks for drug delivery. , 2015, Chemical communications.

[97]  Huimao Zhang,et al.  Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications , 2015, Nature Communications.

[98]  F. Caruso,et al.  Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands , 2015 .

[99]  Lujie Cao,et al.  Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers. , 2015, Angewandte Chemie.

[100]  James E. Evans,et al.  Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. , 2015, Journal of the American Chemical Society.

[101]  Seth M. Cohen,et al.  polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials. , 2015, Angewandte Chemie.

[102]  Stuart J. Rowan,et al.  Metallo-, Thermo-, and Photoresponsive Shape Memory and Actuating Liquid Crystalline Elastomers , 2015 .

[103]  Joseph J. Richardson,et al.  pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. , 2015, Small.

[104]  Athanassios D. Katsenis,et al.  In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework , 2015, Nature Communications.

[105]  C. Serre,et al.  A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. , 2015, Chemical communications.

[106]  Ji Hun Park,et al.  A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. , 2014, Angewandte Chemie.

[107]  Zhong‐Yong Yuan,et al.  Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst. , 2014, Nanoscale.

[108]  Yuan Ping,et al.  Engineering multifunctional capsules through the assembly of metal-phenolic networks. , 2014, Angewandte Chemie.

[109]  Zhong‐Yong Yuan,et al.  Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures , 2014 .

[110]  Zhiyong Tang,et al.  Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. , 2014, Journal of the American Chemical Society.

[111]  Wei He,et al.  Well-defined metal-organic framework hollow nanocages. , 2014, Angewandte Chemie.

[112]  Michael W Anderson,et al.  Crystallisation of solvothermally synthesised ZIF-8 investigated at the bulk, single crystal and surface level , 2013 .

[113]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[114]  Jiwei Cui,et al.  One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering , 2013, Science.

[115]  Q. Wang,et al.  Nanopolyhedrons and mesoporous supra-structures of Zeolitic Imidazolate framework with high adsorption performance , 2013 .

[116]  Charles M. Rubert Pérez,et al.  Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. , 2013, Journal of the American Chemical Society.

[117]  A. Cheetham,et al.  Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. , 2012, Chemical communications.

[118]  G. Férey,et al.  In Situ NMR, Ex Situ XRD and SEM Study of the Hydrothermal Crystallization of Nanoporous Aluminum Trimesates MIL-96, MIL-100, and MIL-110 , 2012 .

[119]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[120]  R. Schweins,et al.  Modulated Formation of MOF-5 Nanoparticles—A SANS Analysis , 2012 .

[121]  Kevin J. Gagnon,et al.  Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. , 2012, Chemical reviews.

[122]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[123]  J. Cravillon,et al.  In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. , 2012, Physical chemistry chemical physics : PCCP.

[124]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[125]  Zhong‐Yong Yuan,et al.  Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. , 2011, Small.

[126]  M. Oh,et al.  One‐Pot Synthesis of Silica@Coordination Polymer Core–Shell Microspheres with Controlled Shell Thickness , 2011, Advanced materials.

[127]  R. Popovitz‐Biro,et al.  Coordination-polymer nanotubes and spheres: a ligand-structure effect. , 2011, Angewandte Chemie.

[128]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[129]  A. Tivanski,et al.  Thixotropic hydrogel derived from a product of an organic solid-state synthesis: properties and densities of metal-organic nanoparticles. , 2011, Journal of the American Chemical Society.

[130]  J. Jasinski,et al.  Structural evolution of zeolitic imidazolate framework-8. , 2010, Journal of the American Chemical Society.

[131]  Tian-Yi Ma,et al.  Periodic mesoporous titanium phosphonate hybrid materials , 2010 .

[132]  Graham N. Newton,et al.  Following the self assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry , 2010 .

[133]  N. Kimizuka,et al.  Confining molecules within aqueous coordination nanoparticles by adaptive molecular self-assembly. , 2009, Angewandte Chemie.

[134]  C. Serre,et al.  Giant pores in a chromium 2,6-naphthalenedicarboxylate open-framework structure with MIL-101 topology. , 2009, Angewandte Chemie.

[135]  Alexander M. Spokoyny,et al.  Infinite coordination polymer nano- and microparticle structures. , 2009, Chemical Society reviews.

[136]  J. Chmielewski,et al.  Self-assembly of collagen peptides into microflorettes via metal coordination. , 2009, Journal of the American Chemical Society.

[137]  Makoto Hashizume,et al.  Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. , 2009, Journal of the American Chemical Society.

[138]  Wenbin Lin,et al.  Modular synthesis of functional nanoscale coordination polymers. , 2009, Angewandte Chemie.

[139]  C. Mirkin,et al.  Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers. , 2007, Journal of the American Chemical Society.

[140]  E. Wang,et al.  Nucleobase−Metal Hybrid Materials: Preparation of Submicrometer-Scale, Spherical Colloidal Particles of Adenine−Gold(III) via a Supramolecular Hierarchical Self-Assembly Approach , 2007 .

[141]  Russell K. Feller,et al.  Fe(III), Mn(II), Co(II), and Ni(II) 3,4,5-trihydroxybenzoate (gallate) dihydrates; a new family of hybrid framework materials , 2006 .

[142]  C. Honeycutt,et al.  Preparation and FT-IR characterization of metal phytate compounds. , 2006, Journal of environmental quality.

[143]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[144]  Chad A. Mirkin,et al.  Chemically tailorable colloidal particles from infinite coordination polymers , 2005, Nature.

[145]  P. Amorós,et al.  S+I- ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates , 2004 .

[146]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[147]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[148]  Sunho Choi,et al.  Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation , 2021 .

[149]  W. Ouyang,et al.  Fabricating nano-IrO2@amorphous Ir-MOF composites for efficient overall water splitting: a one-pot solvothermal approach , 2020 .

[150]  Joseph J. Richardson,et al.  Nano-Biohybrids: In Vivo Synthesis of Metal-Organic Frameworks inside Living Plants. , 2018, Small.

[151]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[152]  Robert C. Wolpert,et al.  A Review of the , 1985 .