High-Bandwidth 3-D Multitrap Actuation Technique for 6-DoF Real-Time Control of Optical Robots

Optical robots are microscale structures actuated using laser trapping techniques. However, the lack of robust and real-time three-dimensional (3-D) actuation techniques reduces most applications to planar space. We present here a new approach to generate and control several optical traps synchronously in 3-D with low latency and high bandwidth (up to 200 Hz). This time-shared technique uses only mirrors, hence, is aberration free. Simultaneous traps are used to actuate optical robots and provide 6-DoF telemanipulation. Experiments demonstrate the flexibility and dexterity of the implemented user control, paving the way to novel applications in microrobotics and biology.

[1]  M. Feingold,et al.  Rotation of single bacterial cells relative to the optical axis using optical tweezers. , 2011, Optics letters.

[2]  Fumihito Arai,et al.  3D Manipulation of lipid nanotubes using laser trapped functional gel microbeads , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[4]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[5]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[6]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[7]  YongKeun Park,et al.  Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps , 2017, Nature communications.

[8]  Deirdre R. Meldrum,et al.  Rotation of single live mammalian cells using dynamic holographic optical tweezers , 2017 .

[9]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[10]  Dominic Ruh,et al.  Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction. , 2011, Optics express.

[11]  Fumihito Arai,et al.  3D 6DOF manipulation of micro-object using laser trapped microtool , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  G. Manduchi,et al.  Performance Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard Real-Time Application , 2008, IEEE Transactions on Nuclear Science.

[13]  Stéphane Régnier,et al.  High-bandwidth 3D force feedback optical tweezers for interactive bio-manipulation , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Steven P Gross,et al.  Application of optical traps in vivo. , 2003, Methods in enzymology.

[15]  Shoji Maruo,et al.  Optically driven micropump produced by three-dimensional two-photon microfabrication , 2006 .

[16]  Andreas Ostendorf,et al.  Optical screw-wrench for microassembly , 2017, Microsystems & Nanoengineering.

[17]  Stefan Sinzinger,et al.  Optical tweezers affected by monochromatic aberrations , 2016 .

[18]  Jesper Glückstad,et al.  Light-driven micro-tool equipped with a syringe function , 2016, Light: Science & Applications.

[19]  Yoshio Tanaka,et al.  Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping , 2007 .

[20]  Satyandra K. Gupta,et al.  Automated Manipulation of Biological Cells Using Gripper Formations Controlled By Optical Tweezers , 2014, IEEE Transactions on Automation Science and Engineering.

[21]  Yoshio Tanaka,et al.  Double-arm optical tweezer system for precise and dexterous handling of micro-objects in 3D workspace , 2018, Optics and Lasers in Engineering.

[22]  Taisuke Masuda,et al.  3D fabrication and manipulation of hybrid nanorobots by laser , 2013, 2013 IEEE International Conference on Robotics and Automation.

[23]  Aude Bolopion,et al.  Analysis of stability and transparency for nanoscale force feedback in bilateral coupling , 2008 .

[24]  Joseph Wang,et al.  Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification , 2017, Science Robotics.

[25]  Guang-Zhong Yang,et al.  Laser‐Printing and 3D Optical‐Control of Untethered Microrobots , 2017 .

[26]  Jack Ng,et al.  Theory of optical trapping by an optical vortex beam. , 2009, Physical review letters.

[27]  Shoji Maruo,et al.  Recent progress in multiphoton microfabrication , 2008 .

[28]  Robin Diekmann,et al.  Nanoscopy of bacterial cells immobilized by holographic optical tweezers , 2016, Nature Communications.

[29]  Fumihito Arai,et al.  Functional gel-microbead manipulated by optical tweezers for local environment measurement in microchip , 2009 .

[30]  Chia-Hsiang Menq,et al.  Three-axis rapid steering of optically propelled micro/nanoparticles. , 2009, The Review of scientific instruments.

[31]  Yoshio Tanaka,et al.  Controlled 3D rotation of biological cells using optical multiple-force clamps. , 2014, Biomedical optics express.

[32]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[33]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[34]  Yu Sun,et al.  Three-Dimensional Rotation of Mouse Embryos , 2012, IEEE Transactions on Biomedical Engineering.

[35]  Fumihito Arai,et al.  Multi-beam laser micromanipulation of microtool by integrated optical tweezers , 2009, 2009 IEEE International Conference on Robotics and Automation.

[36]  Demetrios N. Christodoulides,et al.  Curved singular beams for three-dimensional particle manipulation , 2015, Scientific Reports.

[37]  Yu-Chih Lin,et al.  Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy. , 2017, Optics letters.

[38]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[39]  Xin Zhao,et al.  Robotic Cell Rotation Based on the Minimum Rotation Force , 2015, IEEE Transactions on Automation Science and Engineering.

[40]  Norman R. Heckenberg,et al.  Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization , 2009 .

[41]  Simon Hanna,et al.  Shape-induced force fields in optical trapping , 2014, Nature Photonics.

[42]  Fumihito Arai,et al.  Synchronized laser micromanipulation of multiple targets along each trajectory by single laser , 2004 .