UNC-73 Activates the Rac GTPase and Is Required for Cell and Growth Cone Migrations in C. elegans

[1]  M. McGowran Cell interactions. , 2000, IDrugs : the investigational drugs journal.

[2]  D. Bar-Sagi,et al.  Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. , 1998, Science.

[3]  A. Hall,et al.  Rho GTPases and the actin cytoskeleton. , 1998, Science.

[4]  L. Van Aelst,et al.  Rho GTPases and signaling networks. , 1997, Genes & development.

[5]  C. Kenyon,et al.  Role of a New Rho Family Member in Cell Migration and Axon Guidance in C. elegans , 1997, Cell.

[6]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[7]  B. Wightman,et al.  Genes that guide growth cones along the C. elegans ventral nerve cord. , 1997, Development.

[8]  J. Schlessinger,et al.  Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains , 1997 .

[9]  R. Mains,et al.  Kalirin, a Cytosolic Protein with Spectrin-like and GDP/GTP Exchange Factor-like Domains That Interacts with Peptidylglycine α-Amidating Monooxygenase, an Integral Membrane Peptide-processing Enzyme* , 1997, The Journal of Biological Chemistry.

[10]  G. Garriga,et al.  Genes necessary for C. elegans cell and growth cone migrations. , 1997, Development.

[11]  Roland L. Dunbrack,et al.  Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. , 1997, Journal of molecular biology.

[12]  C. Branda,et al.  Genetic enhancers of sem-5 define components of the gonad-independent guidance mechanism controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. , 1997, Developmental biology.

[13]  C. Goodman,et al.  The Molecular Biology of Axon Guidance , 1996, Science.

[14]  J. Culotti,et al.  UNC-40, a C. elegans Homolog of DCC (Deleted in Colorectal Cancer), Is Required in Motile Cells Responding to UNC-6 Netrin Cues , 1996, Cell.

[15]  L. Lim,et al.  The Caenorhabditis elegans p21-activated Kinase (CePAK) Colocalizes with CeRac1 and CDC42Ce at Hypodermal Cell Boundaries during Embryo Elongation* , 1996, The Journal of Biological Chemistry.

[16]  S. Bryant Evaluation of threading specificity and accuracy , 1996, Proteins.

[17]  S. Rogers,et al.  PEST sequences and regulation by proteolysis. , 1996, Trends in biochemical sciences.

[18]  A. Debant,et al.  The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Way,et al.  Suppressors of the unc-73 gene of Caenorhabditis elegans. , 1996, Genetics.

[20]  D. Montell,et al.  Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis , 1996, The Journal of cell biology.

[21]  Y. Zheng,et al.  The Dbl family of oncogenes. , 1996, Current opinion in cell biology.

[22]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[23]  Y. Jan,et al.  Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines , 1996, Nature.

[24]  C. Goodman,et al.  The Transmembrane Tyrosine Phosphatase DLAR Controls Motor Axon Guidance in Drosophila , 1996, Cell.

[25]  L. Lim,et al.  Isolation of the gene coding for Caenorhabditis elegans Rac2 homologue, a Ras-related small GTP-binding protein. , 1996, Gene.

[26]  B. Rost PHD: predicting one-dimensional protein structure by profile-based neural networks. , 1996, Methods in enzymology.

[27]  Y. Jia,et al.  A C. elegans mutant screen based on antibody or histochemical staining. , 1995, Genetic analysis : biomolecular engineering.

[28]  C. Marshall,et al.  Ras recruits Raf‐1 to the plasma membrane for activation by tyrosine phosphorylation. , 1995, The EMBO journal.

[29]  C. Nobes,et al.  Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia , 1995, Cell.

[30]  Wein-Shue Chen,et al.  Additions and Corrections to The Caenorhabditis elegans small GTP-binding protein RhoA is enriched in the nerve ring and sensory neurons during larval development. , 1994, The Journal of Biological Chemistry.

[31]  D. Bar-Sagi Mammalian cell microinjection assay. , 1995, Methods in Enzymology.

[32]  A. Hall,et al.  Purification of recombinant Rho/Rac/G25K from Escherichia coli. , 1995, Methods in enzymology.

[33]  Wendell A. Lim,et al.  Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains , 1995, Nature.

[34]  P. Forscher,et al.  Cytoskeletal reorganization underlying growth cone motility , 1994, Current Opinion in Neurobiology.

[35]  Y. Jan,et al.  Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. , 1994, Genes & development.

[36]  Y. Zheng,et al.  Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. , 1994, The Journal of biological chemistry.

[37]  S. Aaronson,et al.  Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. , 1994, The Journal of biological chemistry.

[38]  M. Saraste,et al.  Crystal structure of the SH3 domain in human Fyn; comparison of the three‐dimensional structures of SH3 domains in tyrosine kinases and spectrin. , 1993, The EMBO journal.

[39]  E. Hafen,et al.  A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos , 1993, Cell.

[40]  H. Horvitz,et al.  Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans. , 1993, Development.

[41]  J. Culotti,et al.  UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans , 1992, Cell.

[42]  Anne J. Ridley,et al.  The small GTP-binding protein rac regulates growth factor-induced membrane ruffling , 1992, Cell.

[43]  J. Way,et al.  Regulation of anterior cell‐specific mec‐3 expression during asymmetric cell division in C. elegans , 1992, Developmental dynamics : an official publication of the American Association of Anatomists.

[44]  J. Way,et al.  The mec‐7 beta‐tubulin gene of Caenorhabditis elegans is expressed primarily in the touch receptor neurons. , 1992, The EMBO journal.

[45]  H. Horvitz,et al.  Genes necessary for directed axonal elongation or fasciculation in C. elegans , 1992, Neuron.

[46]  J. Culotti,et al.  EXAMINATION OF NEURONS IN WILD TYPE AND MUTANTS OF CAENORHABDITIS ELEGANS USING ANTIBODIES TO HORSERADISH PEROXIDASE , 2007, Journal of neurogenetics.

[47]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[48]  Gary Ruvkun,et al.  The unc-86 gene product couples cell lineage and cell identity in C. elegans , 1990, Cell.

[49]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[50]  S. Siddiqui Mutations affecting axonal growth and guidance of motor neurons and mechanosensory neurons in the nematode Caenorhabditis elegans. , 1990, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[51]  W. Wood,et al.  Mutations affecting embryonic cell migrations in Caenorhabditis elegans. , 1990, Developmental genetics.

[52]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[53]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[54]  M. Frohman,et al.  Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Waterston,et al.  Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. , 1988, Genetics.

[56]  D. Hall,et al.  Genetics of cell and axon migrations in Caenorhabditis elegans. , 1987, Development.

[57]  David Hirsh,et al.  A trans-spliced leader sequence on actin mRNA in C. elegans , 1987, Cell.

[58]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[60]  Piotr Mikolajczyk,et al.  A+A+C , 1964 .