Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas

Shape memory alloys (SMAs) are metallic materials with great potential to enhance civil engineering structures. They are often referred to as smart materials. A basic description of their highly non-linear material behaviour in terms of shape memory effect, superelasticity, martensite damping and variable stiffness is given in this article. It is followed by a brief introduction to Ni−Ti and Fe−Mn−Si SMAs. Pre-existing and new applications in the fields of damping, active vibration control and prestressing or posttensioning of structures with fibres and tendons are being reviewed with regard to civil engineering. Furthermore, the relatively high costs and the problem of retaining posttensioning forces when using some types of SMAs are named. In this regard is Fe−Mn−Si−Cr discussed as potential low cost SMA. A simple model for calculating the activation times of resistive heated SMA actuators or springs is presented. The results and measured data lead to further constrictions. Finally, new ideas for using SMAs in civil engineering structures are proposed in this article such as an improved concept for the active confinement of concrete members. This article is to introduce civil engineers to the world of shape memory alloys and invite them to contribute to their wider use in civil engineering structures.RésuméLes alliages à mémoire de forme (AMF), souvent qualifiés de «matériaux intelligent», présentent un grand potentiel pour l'amélioration des ouvrages de génie civil. Une description de leurs comportements non linéaires, que sont la mémoire de forme, la superélasticité, la capacité d'amortissement de la martensite et la rigidité variable, est donnée. Elle est suivie d'une introduction sur les AMF Ni−Ti et Fe−Mn−Si. Des applications telles que l'amortissement et le contrôle actif des vibrations ou la pré- ou postcontrainte au moyen de fibres et de câbles sont décrites. Les problèmes du coût des AFM et du maintien de la postcontrainte rencontré avec certains AFM sont aussi abordés. L'alliage Fe−Mn−Si−Cr est discuté comme AMF potentiellement bon marché. Un modèle du temps d'activation des actuateurs ou des ressorts en AMF chauffés par résistance est présenté. Cette modélisation et les résultats de mesure montrent que l'utilisation de ces AMF reste soumise à certaines restrictions. Finalement, de nouvelles applications des AMF en génie civil, telles qu'une méthode de confinement actif des éléments en béton, sont présentées. Cet article se propose d'introduire les ingénieurs en génie civil dans l'univers des AMF pour les inciter à contribuer à leur plus large utilisation.

[1]  L. Schetky Shape-memory alloys , 1979 .

[2]  P. Wriggers,et al.  Self–Actuating SMA–HPFRC Fuses for Auto–Adaptive Composite Structures , 2003 .

[3]  Arata Masuda,et al.  An overview of vibration and seismic applications of NiTi shape memory alloy , 2002 .

[4]  DONATELLO GARDONE,et al.  EXPERIMENTAL BEHAVIOUR OF R/C FRAMES RETROFITTED WITH DISSIPATING AND RE-CENTRING BRACES , 2004 .

[5]  Druce P. Dunne,et al.  New Corrosion Resistant Iron-based Shape Memory Alloys , 1997 .

[6]  Arup K. Maji,et al.  Smart Prestressing with Shape-Memory Alloy , 1998 .

[7]  Antoine E. Naaman,et al.  SELF-STRESSING FIBER COMPOSITES , 2000 .

[8]  Norio Shinya,et al.  Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Gary J. Balas,et al.  Shape memory alloys for augmenting damping of flexible structures , 1996 .

[10]  J. A. Balta,et al.  Adaptive composites with embedded shape memory alloys , 2001 .

[11]  Peter H. Meckl,et al.  Modeling of SMA Tendons for Active Control of Structures , 1997 .

[12]  Robert J. Bernhard,et al.  ADAPTIVE-PASSIVE ABSORBERS USING SHAPE-MEMORY ALLOYS , 2002 .

[13]  Andrea Bergamini,et al.  Feasibility of concrete prestressed by shape memory alloy short fibers , 2005 .

[14]  E. J. Graesser,et al.  Shape‐Memory Alloys as New Materials for Aseismic Isolation , 1991 .

[15]  Hideki Nagai,et al.  A new method for fabricating SMA/CFRP smart hybrid composites , 2002 .

[16]  T. W. Duerig,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[17]  M. Dolce,et al.  Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension , 2001 .

[18]  S. Aizawa,et al.  Case studies of smart materials for civil structures , 1998 .

[19]  Kari Ullakko,et al.  Internal friction and some other properties of shape memory Fe-Mn-Si based alloys , 2003 .

[20]  Yuji Matsuzaki,et al.  Macroscopic and Microscopic Constitutive Models of Shape Memory Alloys Based on Phase Interaction Energy Function: A Review , 2004 .

[21]  Xiaoming Wang Shape memory alloy volume fraction of pre-stretched shape memory alloy wire-reinforced composites for structural damage repair , 2002 .

[22]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[23]  S. Miyazaki,et al.  Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites , 1998 .

[24]  J. Van Humbeeck,et al.  The High Damping Capacity of Shape Memory Alloys , 2000 .

[25]  C. Liang,et al.  Design of Shape Memory Alloy Springs with Applications in Vibration Control , 1997 .

[26]  Tadashige Ikeda,et al.  The active tuning of a shape memory alloy pseudoelastic property , 2004 .

[27]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[28]  Darel E. Hodgson,et al.  Damping Applications of Shape-Memory Alloys , 2002 .

[29]  Yan Liang Du,et al.  A Study of SMA used for Threaded Connections having Loosening-Proof and Anti-Break Functions , 2002 .

[30]  Christoph Czaderski,et al.  RC beam with variable stiffness and strength , 2006 .

[31]  Kenji Hiraga,et al.  Shape Memory Effect and Crystallographic Investigation in VN Containing Fe-Mn-Si-Cr Alloys , 2004 .

[32]  K. Melton,et al.  Ni-Ti Based Shape Memory Alloys , 1990 .

[33]  Xiaobing Ren,et al.  Ti-Ni-Based Shape Memory Alloys as Smart Materials , 2003 .

[34]  S. Kajiwara,et al.  Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys , 1999 .

[35]  J. Van Humbeeck,et al.  Shape Memory Alloys: A Material and a Technology , 2001 .

[36]  Yoshimi Watanabe,et al.  Smart Materials-Fundamentals and Applications. Enhanced Mechanical Properties of Fe-Mn-Si-Cr Shape Memory Fiber/Plaster Smart Composite. , 2002 .

[37]  Yoshimi Watanabe,et al.  Development of Shape Memory Alloy Fiber Reinforced Smart FGMs , 2003 .

[38]  Neven Krstulovic-Opara,et al.  Active Confinement of Concrete Members with Self-Stressing Composites , 2000 .

[39]  Lien-Wen Chen,et al.  Dynamic stability of a shape memory alloy wire reinforced composite beam , 2002 .

[40]  V. Stambouli,et al.  STRUCTURAL STUDY OF Fe-Mn-Si AND Fe-Mn-Cr SHAPE MEMORY STEELS , 1991 .

[41]  Zhikun Hou,et al.  Vibration Suppression of Structures Using Passive Shape Memory Alloy Energy Dissipation Devices , 2001 .

[42]  Scott T. Smith,et al.  FRP: Strengthened RC Structures , 2001 .

[43]  Shuangshuang Sun,et al.  Dynamic response of a frame with SMA bracing , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[44]  Gunther Eggeler,et al.  Structural fatigue of pseudoelastic NiTi shape memory wires , 2004 .

[45]  Parviz Soroushian,et al.  Repair and Strengthening of Concrete Structures Through Application of Corrective Posttensioning Forces with Shape Memory Alloys , 2001 .

[46]  Masao Komatsu,et al.  Structural refinement and strengthening of an Fe–Mn–Si–Cr–Ni shape memory alloy by high-speed rolling , 2003 .

[47]  Roberto T. Leon,et al.  Steel Beam-Column Connections using Shape Memory Alloys , 2004 .

[48]  Reginald DesRoches,et al.  Seismic retrofit of simply supported bridges using shape memory alloys , 2002 .

[49]  S. Miyazaki,et al.  Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials , 1998 .

[50]  W. Huang On the selection of shape memory alloys for actuators , 2002 .

[51]  Erhard Hornbogen,et al.  Review Thermo-mechanical fatigue of shape memory alloys , 2004 .

[52]  Cheng Xin Lin,et al.  Research on low temperature relaxation characteristics in Fe-Mn-Si-based SMA , 2003 .

[53]  Krzysztof Wilde,et al.  Base isolation system with shape memory alloy device for elevated highway bridges , 2000 .

[54]  Tomoyuki Kakeshita,et al.  Science and Technology of Shape-Memory Alloys: New Developments , 2002 .

[55]  Antoine E. Naaman,et al.  High Performance Fiber Reinforced Cement Composites HPFRCC-4: International RILEM Workshop , 2003 .

[56]  Y. Yamaji,et al.  Physical properties controlling shape memory effect in FeMnSi alloys , 1986 .

[57]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[58]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[59]  Norio Shinya,et al.  Improved shape memory properties and internal structures in Fe-Mn-Si-based alloys containing Nb and C , 2003 .

[60]  Qingbin Li,et al.  Behavior of concrete driven by uniaxially embedded shape memory alloy actuators , 2003 .