Computational phase-change memory: beyond von Neumann computing

The explosive growth in data-centric artificial intelligence related applications necessitates a radical departure from traditional von Neumann computing systems, which involve separate processing and memory units. Computational memory is one such approach where certain tasks are performed in place in the memory itself. This is enabled by the physical attributes and state dynamics of the memory devices. Naturally, memory plays a central role in this computing paradigm for which emerging post-CMOS, non-volatile memory devices based on resistance-based information storage are particularly well suited. Phase-change memory is arguably the most advanced resistive memory technology and in this article we present a comprehensive review of in-memory computing using phase-change memory (PCM) devices.

[1]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[2]  J Feldmann,et al.  Calculating with light using a chip-scale all-optical abacus , 2017, Nature Communications.

[3]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[4]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[5]  Evangelos Eleftheriou,et al.  Detecting Correlations Using Phase-Change Neurons and Synapses , 2016, IEEE Electron Device Letters.

[6]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[7]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[8]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.

[9]  Joseph S. Friedman,et al.  Low-Energy Truly Random Number Generation with Superparamagnetic Tunnel Junctions for Unconventional Computing , 2017, 1706.05262.

[10]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[11]  Stephen Richardson,et al.  Dark Memory and Accelerator-Rich System Optimization in the Dark Silicon Era , 2016, IEEE Design & Test.

[12]  Heiner Giefers,et al.  Compressed Sensing With Approximate Message Passing Using In-Memory Computing , 2018, IEEE Transactions on Electron Devices.

[13]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[14]  David A. Ferrucci,et al.  Introduction to "This is Watson" , 2012, IBM J. Res. Dev..

[15]  Qing Wu,et al.  A novel true random number generator based on a stochastic diffusive memristor , 2017, Nature Communications.

[16]  Thomas P. Parnell,et al.  Temporal correlation detection using computational phase-change memory , 2017, Nature Communications.

[17]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[18]  Miao Hu,et al.  ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[19]  Georgios C. Sirakoulis,et al.  Emerging Memristor-Based Logic Circuit Design Approaches: A Review , 2016, IEEE Circuits and Systems Magazine.

[20]  Gökmen Tayfun,et al.  Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations , 2016, Front. Neurosci..

[21]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[22]  Catherine E. Graves,et al.  Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine , 2018, Advanced materials.

[23]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[24]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[25]  Damien Querlioz,et al.  Narrow Heater Bottom Electrode‐Based Phase Change Memory as a Bidirectional Artificial Synapse , 2018, Advanced Electronic Materials.

[26]  Rong Zhao,et al.  Ultrafast phase-change logic device driven by melting processes , 2014, Proceedings of the National Academy of Sciences.

[27]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[28]  Ran El-Yaniv,et al.  Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations , 2016, J. Mach. Learn. Res..

[29]  Evangelos Eleftheriou,et al.  The Role of Short-Term Plasticity in Neuromorphic Learning: Learning from the Timing of Rate-Varying Events with Fatiguing Spike-Timing-Dependent Plasticity , 2018, IEEE Nanotechnology Magazine.

[30]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[31]  Tayfun Gokmen,et al.  The Next Generation of Deep Learning Hardware: Analog Computing , 2019, Proceedings of the IEEE.

[32]  Daniel Krebs,et al.  Collective Structural Relaxation in Phase‐Change Memory Devices , 2018, Advanced Electronic Materials.

[33]  Yusuf Leblebici,et al.  Neuromorphic computing with multi-memristive synapses , 2017, Nature Communications.

[34]  Victor G. Karpov,et al.  Possible mechanisms for1/fnoise in chalcogenide glasses: A theoretical description , 2009 .

[35]  D. Ielmini,et al.  Logic Computation in Phase Change Materials by Threshold and Memory Switching , 2013, Advanced materials.

[36]  Nishil Talati,et al.  Logic Design Within Memristive Memories Using Memristor-Aided loGIC (MAGIC) , 2016, IEEE Transactions on Nanotechnology.

[37]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[38]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[39]  Abu Sebastian,et al.  Tutorial: Brain-inspired computing using phase-change memory devices , 2018, Journal of Applied Physics.

[40]  N Gong,et al.  Signal and noise extraction from analog memory elements for neuromorphic computing , 2018, Nature Communications.

[41]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[42]  Massimo Rudan,et al.  Self-Heating Phase-Change Memory-Array Demonstrator for True Random Number Generation , 2017, IEEE Transactions on Electron Devices.

[43]  Yu Wang,et al.  Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication , 2015, Journal of Computer Science and Technology.

[44]  Manuel Le Gallo,et al.  Monatomic phase change memory , 2018, Nature Materials.

[45]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[46]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[47]  Haralampos Pozidis,et al.  Recent Progress in Phase-Change Memory Technology , 2016, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[48]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[49]  Nikolas Ioannou,et al.  Management of Next-Generation NAND Flash to Achieve Enterprise-Level Endurance and Latency Targets , 2018, ACM Trans. Storage.

[50]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[51]  E. Eleftheriou,et al.  A phase-change memory model for neuromorphic computing , 2018, Journal of Applied Physics.

[52]  J. A. Aseltine,et al.  The application of amorphous materials to computer memories , 1973 .

[53]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[54]  Evangelos Eleftheriou,et al.  Projected phase-change memory devices , 2015, Nature Communications.

[55]  Stefano Ambrogio,et al.  True Random Number Generation by Variability of Resistive Switching in Oxide-Based Devices , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[56]  Uri C. Weiser,et al.  MAGIC—Memristor-Aided Logic , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[57]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[58]  M. Breitwisch,et al.  Estimation of amorphous fraction in multilevel phase change memory cells , 2010, 2009 Proceedings of the European Solid State Device Research Conference.

[59]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[60]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[61]  Jiantao Zhou,et al.  Stochastic Memristive Devices for Computing and Neuromorphic Applications , 2013, Nanoscale.

[62]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[63]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[64]  Massimiliano Di Ventra,et al.  The parallel approach , 2013 .

[65]  H.-S. Philip Wong,et al.  Phase-Change Memory—Towards a Storage-Class Memory , 2017, IEEE Transactions on Electron Devices.

[66]  Onur Mutlu,et al.  Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[67]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[68]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.

[69]  Alessandro Calderoni,et al.  Physical Unbiased Generation of Random Numbers With Coupled Resistive Switching Devices , 2016, IEEE Transactions on Electron Devices.