Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables, which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming problems with general nonlinear constraints and explicit handling of bound constraints on the problem variables. We use an exterior penalty approach to handle the general nonlinear constraints and a local search approach to take into account the presence of discrete variables. We show that the proposed algorithms globally converge to points satisfying different necessary optimality conditions. We report a computational experience and a comparison with a well-known derivative-free optimization software package, i.e., NOMAD, on a set of test problems. Furthermore, we employ the proposed methods and NOMAD to solve a real problem concerning the optimal design of an industrial electric motor. This allows to show that the method converging to the better extended stationary points obtains the best solution also from an applicative point of view.

[1]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[2]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[3]  Paul Tseng,et al.  Objective-derivative-free methods for constrained optimization , 2002, Math. Program..

[4]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[5]  Marco Sciandrone,et al.  Sequential Penalty Derivative-Free Methods for Nonlinear Constrained Optimization , 2010, SIAM J. Optim..

[6]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[7]  Marco Sciandrone,et al.  An Algorithm Model for Mixed Variable Programming , 2005, SIAM J. Optim..

[8]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[9]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[10]  S. Lucidi,et al.  Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds , 2009 .

[11]  Francisco Gortázar,et al.  A black-box scatter search for optimization problems with integer variables , 2014, J. Glob. Optim..

[12]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[13]  Marco Sciandrone,et al.  A Derivative-Free Algorithm for Bound Constrained Optimization , 2002, Comput. Optim. Appl..

[14]  D. Eichmann More Test Examples For Nonlinear Programming Codes , 2016 .

[15]  J. Dennis,et al.  Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems , 2004 .

[16]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[17]  L. R. Huang,et al.  On First- and Second-Order Conditions for Error Bounds , 2004, SIAM J. Optim..

[18]  Charles Audet,et al.  Mesh adaptive direct search algorithms for mixed variable optimization , 2007, Optim. Lett..

[19]  Ubaldo M. García-Palomares,et al.  New Sequential and Parallel Derivative-Free Algorithms for Unconstrained Minimization , 2002, SIAM J. Optim..

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  Rafael Asorey-Cacheda,et al.  Adapting derivative free optimization methods to engineering models with discrete variables , 2011 .

[22]  J. Dennis,et al.  Pattern search algorithms for mixed variable general constrained optimization problems , 2003 .

[23]  Marco Villani,et al.  Finite-Element-Based Multiobjective Design Optimization Procedure of Interior Permanent Magnet Synchronous Motors for Wide Constant-Power Region Operation , 2012, IEEE Transactions on Industrial Electronics.

[24]  Charles Audet,et al.  Pattern Search Algorithms for Mixed Variable Programming , 2000, SIAM J. Optim..

[25]  Luís N. Vicente,et al.  Implicitly and densely discrete black-box optimization problems , 2009, Optim. Lett..

[26]  Stefano Lucidi,et al.  Derivative-free methods for bound constrained mixed-integer optimization , 2011, Computational Optimization and Applications.

[27]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[28]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[29]  J. Dennis,et al.  Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System , 2001 .

[30]  Christine A. Shoemaker,et al.  SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems , 2013, Comput. Oper. Res..

[31]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[32]  Luís Nunes Vicente,et al.  Worst case complexity of direct search , 2013, EURO J. Comput. Optim..

[33]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..