Impaired PTH-induced endocytotic down-regulation of the renal type IIa Na+/Pi-cotransporter in RAP-deficient mice with reduced megalin expression

[1]  C. Wagner,et al.  Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney , 2003, Pflügers Archiv.

[2]  P. Verroust,et al.  The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. , 2002, Kidney international.

[3]  S. Shenolikar,et al.  Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Christensen,et al.  Megalin and cubilin: multifunctional endocytic receptors , 2002, Nature Reviews Molecular Cell Biology.

[5]  J. Fyfe,et al.  Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D3 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Völkl,et al.  Regulation of the renal type IIa Na/Pi cotransporter by cGMP , 2001, Pflügers Archiv.

[7]  H Birn,et al.  Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. , 2001, American journal of physiology. Renal physiology.

[8]  I. Stagljar,et al.  Interaction of the Type IIa Na/Pi Cotransporter with PDZ Proteins* , 2001, The Journal of Biological Chemistry.

[9]  Yanshu Wang,et al.  Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. , 2000, Human molecular genetics.

[10]  Thomas J. Jentsch,et al.  ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease , 2000, Nature.

[11]  M. Mclaughlin,et al.  Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. , 2000, The Journal of clinical investigation.

[12]  H. Völkl,et al.  Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. , 2000, American journal of physiology. Renal physiology.

[13]  H Birn,et al.  Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules. , 2000, Journal of the American Society of Nephrology : JASN.

[14]  H. Murer,et al.  Proximal tubular phosphate reabsorption: molecular mechanisms. , 2000, Physiological reviews.

[15]  T. Willnow,et al.  Lipoprotein receptors: new roles for ancient proteins , 1999, Nature Cell Biology.

[16]  B. Kaissling,et al.  Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. , 1999, The Journal of clinical investigation.

[17]  P. Aronson,et al.  Specific Association of Megalin and the Na+/H+ Exchanger Isoform NHE3 in the Proximal Tubule* , 1999, The Journal of Biological Chemistry.

[18]  G. Wallukat,et al.  Megalin Antagonizes Activation of the Parathyroid Hormone Receptor* , 1999, The Journal of Biological Chemistry.

[19]  Henrik Vorum,et al.  An Endocytic Pathway Essential for Renal Uptake and Activation of the Steroid 25-(OH) Vitamin D3 , 1999, Cell.

[20]  E. Lederer,et al.  Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Hammer,et al.  RAP, a specialized chaperone, prevents ligand‐induced ER retention and degradation of LDL receptor‐related endocytic receptors. , 1996, The EMBO journal.

[22]  S. Armstrong,et al.  Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Hammond,et al.  Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. , 1995, European journal of cell biology.

[24]  B. Kaissling,et al.  Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). , 1994, The American journal of physiology.

[25]  T. Dawson,et al.  Ecto-5'-nucleotidase: localization in rat kidney by light microscopic histochemical and immunohistochemical methods. , 1989, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[26]  B. Stieger,et al.  A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. , 1981, Biochimica et biophysica acta.

[27]  S. Moestrup,et al.  Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. , 2002, Journal of the American Society of Nephrology : JASN.

[28]  B. Kaissling,et al.  Internalization of proximal tubular type II Na-P(i) cotransporter by PTH: immunogold electron microscopy. , 2000, American journal of physiology. Renal physiology.

[29]  H. Murer,et al.  Parathyroid hormone receptors in control of proximal tubule function. , 1992, Annual review of physiology.