Towards rational molecular design for reduced chronic aquatic toxicity

The routine rational design of commercial chemicals with minimal toxicological hazard to humans and the environment is a key goal of green chemistry. The development of such a design strategy requires an understanding of the interrelationships between physical–chemical properties, structure, mechanisms and modes of action. This study develops property-based guidelines for the design of chemicals with reduced chronic aquatic toxicity to multiple standardized species and endpoints by exploring properties associated with bioavailability, narcotic toxicity and reactive modes of action, such as electrophilic interactions. Two simple properties emerge as key parameters that distinguish chemicals in the Low EPA level of concern to three aquatic species from those in the High level of concern – octanol–water partition coefficient, (log Po–w) and ΔE (LUMO–HOMO energy gap). Physicochemical properties were predicted using Schrodinger's QikProp, while frontier orbital energies were determined based on AM1 and DFT calculations using Gaussian03. Experimental toxicity data used consisted of chronic toxicity thresholds (NOEC) for Daphnia magna reproduction (317 compounds, 504 h-assay) and Oryzias latipes (Japanese medaka, 122 compounds in 336, 504 and 672 h assays) survival, and Pseudokirchneriella subcapitata, a green algae model (392 compounds). Results indicate that 92% of compounds of Low chronic concern have log Po–w values 9 eV. Chronically safe compounds to P. subcapitata meet similar criteria – 80% have log Po–w values < 3 and ΔE greater than 9 eV. Our work proposes design guidelines that can be used to significantly increase the probability that a chemical will have low chronic toxicity, based on the endpoints evaluated, to the three diverse aquatic species studied, and potentially to other aquatic species.

[1]  P. Weber,et al.  Dependence of two-photon ionization photoelectron spectra on laser coherence bandwidth , 1993 .

[2]  M. Hubin-franskin,et al.  High-resolution HeI photoelectron spectrum of acetonitrile , 1992 .

[3]  Bryan W Brooks,et al.  Leveraging mammalian pharmaceutical toxicology and pharmacology data to predict chronic fish responses to pharmaceuticals. , 2010, Toxicology letters.

[4]  J. V. Knop,et al.  Photoelectron spectra of and ab initio calculations on chlorobenzenes. 2. Trichlorobenzenes, tetrachlorobenzenes, and pentachlorobenzene , 1981 .

[5]  T. Wayne Schultz,et al.  Structure‐activity relationships for Pimephales and Tetrahymena: A mechanism of action approach , 1997 .

[6]  I. S. Kashparov,et al.  Heterocyclic pleiadiene analogs , 1971 .

[7]  Joop L. M. Hermens,et al.  Quantitative correlation studies between the acute lethal toxicity of 15 organic halides to the guppy (Poecillah Reticulata) and chemical reactivity towards 4‐nitrobenzylpyridine , 1985 .

[8]  H. Meyer Zur Theorie der Alkoholnarkose , 1899, Archiv für experimentelle Pathologie und Pharmakologie.

[9]  S. McGlynn,et al.  Photoelectron spectroscopy of some biological molecules , 1978 .

[10]  F. M. Page,et al.  Experimental determination of electron affinities. Part 11.—Electron capture by some cyanocarbons and related compounds , 1967 .

[11]  H. Sanders,et al.  Toxicity, residue dynamics, and reproductive effects of phthalate esters in aquatic invertebrates. , 1973, Environmental research.

[12]  D. W. Turner,et al.  Photoelectron spectroscopy of simple amides and carboxylic acids , 1969 .

[13]  Daniel L Villeneuve,et al.  Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment , 2010, Environmental toxicology and chemistry.

[14]  S E Belanger,et al.  Environmental properties of long-chain alcohols. Part 2: Structure-activity relationship for chronic aquatic toxicity of long-chain alcohols. , 2009, Ecotoxicology and environmental safety.

[15]  M. Dewar,et al.  Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s. c. f. m.o. methods , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  D. W. Turner,et al.  Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 3.—Anilines, phenols and related compounds , 1973 .

[17]  A. L. Filby,et al.  Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. , 2010, Aquatic toxicology.

[18]  A. Oskam,et al.  He(I) and He(II) photoelectron spectra of some substituted ethylenes , 1978 .

[19]  D. W. Turner,et al.  Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2.—Phenylethylenes , 1973 .

[20]  M. Dewar,et al.  Photoelectron spectra of molecules. III. Ionization potentials of some cyclic hydrocarbons and their derivatives, and heats of formation and ionization potentials calculated by the MINDO[minimum neglect of differential overlap]SCF MO method , 1970 .

[21]  Ionization Potentials of Phenylenediamines and Steric Effect in the Ortho Isomer , 1973 .

[22]  J. V. Knop,et al.  Photoelectron spectra of and ab initio calculations on chlorobenzenes. 1. Chlorobenzene and dichlorobenzenes , 1981 .

[23]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[24]  S. Villa-Treviño,et al.  Indirect alkylation of CBA mouse liver DNA and RNA by hydrazine in vivo. A possible mechanism of action as a carcinogen. , 1981, Journal of the National Cancer Institute.

[25]  G. F. Crable,et al.  EFFECT OF SUBSTITUENT GROUPS ON THE IONIZATION POTENTIALS OF BENZENES , 1962 .

[26]  L. Eriksson,et al.  Multivariate characterization and modeling of the chemical reactivity of epoxides , 1994 .

[27]  R. Dixon,et al.  High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state , 1977 .

[28]  Gilman D. Veith,et al.  Structure–Toxicity Relationships for the Fathead Minnow, Pimephales promelas: Narcotic Industrial Chemicals , 1983 .

[29]  James W. McFarland,et al.  Parabolic relation between drug potency and hydrophobicity , 1970 .

[30]  S. Nagakura,et al.  Photoelectron spectra of nitrophenols and nitroanisoles , 1975 .

[31]  L. Klasinc,et al.  Photoelectron spectra of acenes. Electronic structure and substituent effects , 1983 .

[32]  J. Peel,et al.  Indentification of the gas-phase trimer methyl sulfide-hydrofluoric acid complex [Me2S.cntdot.(HF)2] by photoelectron spectroscopy , 1983 .

[33]  F. A. Mellon,et al.  Electron-impact ionization and appearance potentials , 1972 .

[34]  J. Vervoort,et al.  Quantum chemistry based quantitative structure‐activity relationships for modeling the (sub)acute toxicity of substituted mononitrobenzenes in aquatic systems , 2006, Environmental toxicology and chemistry.

[35]  Tingting Du,et al.  Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. , 2009, Chemosphere.

[36]  M. Crane,et al.  Chronic aquatic environmental risks from exposure to human pharmaceuticals. , 2006, The Science of the total environment.

[37]  G. Bieri,et al.  30.4-nm He(II) photoelectron spectra of organic molecules: Part I. Hydrocarbons , 1980 .

[38]  G. Mouvier,et al.  Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques , 1977 .

[39]  K. Ohno,et al.  Penning ionization electron spectroscopy of C2H5X (X=NH2, OH, SH, Cl, I). Relative reactivity of orbitals localizing on functional groups upon electrophilic attack by metastable helium atoms , 1983 .

[40]  A. Furlani,et al.  Valence shell photoionization spectra of some substituted hydroxy-acetylenes. A tentative correlation with their cyclotrimerization reactions , 1979 .

[41]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[42]  Gilman D. Veith,et al.  A QSAR Approach for Estimating the Aquatic Toxicity of Soft Electrophiles [QSAR for Soft Electrophiles] , 1993 .

[43]  C. Chambliss,et al.  Effects of the antihistamine diphenhydramine on selected aquatic organisms , 2011, Environmental toxicology and chemistry.

[44]  Paul T Anastas,et al.  Toward a comprehensive molecular design framework for reduced hazard. , 2010, Chemical reviews.

[45]  R. Kirby,et al.  Application of photoelectron spectrometry to pesticide analysis. II. Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins. , 1971, Analytical chemistry.

[46]  D. F. Lewis Frontier orbitals in chemical and biological activity: quantitative relationships and mechanistic implications. , 1999, Drug metabolism reviews.

[47]  M. Dewar,et al.  Photoelectron spectra of molecules—IV : Ionization potentials and heats of formation of some hydrazines and amines , 1970 .

[48]  J. Reilly,et al.  The laser photoelectron spectrum of gas phase aniline , 1983 .

[49]  John S. Velte Acute toxicity of hydrazine hydrate to the fathead minnow (Pimephales promelas) and daphnid (Daphnia pulex) , 1984, Bulletin of environmental contamination and toxicology.

[50]  K. Fent,et al.  Highly active human pharmaceuticals in aquatic systems: A concept for their identification based on their mode of action. , 2010, Aquatic toxicology.

[51]  Anders Goksøyr Endocrine Disruptors in the Marine Environment: Mechanisms of Toxicity and their Influence on Reproductive Processes in Fish , 2006, Journal of toxicology and environmental health. Part A.

[52]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[53]  S. Hecht,et al.  Identification of DNA adducts of acetaldehyde. , 2000, Chemical research in toxicology.

[54]  E. Heilbronner,et al.  Valence Ionization Energies of Hydrocarbons , 1977 .

[55]  Paul T Anastas,et al.  Innovations and green chemistry. , 2007, Chemical reviews.

[56]  W. Niessen,et al.  30.4-nm He (II) photoelectron spectra of organic molecules: Part III. Oxo-compounds (C, H, O)☆ , 1980 .

[57]  I. Watanabe,et al.  LONE PAIR IONIZATION POTENTIALS OF CARBOXYLIC ACIDS DETERMINED BY HE (I) PHOTOELECTRON SPECTROSCOPY , 1973 .

[58]  C. Porte,et al.  Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[59]  E. Vogel,et al.  Consequences of π/σ Interaction in Bishomoanthraquinones and Their Dimethylene Derivatives. A Structural and PE Spectroscopic Study. , 1987 .

[60]  E. Fukusaki,et al.  GC‐MS‐based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats , 2011, Journal of applied toxicology : JAT.

[61]  Alistair B A Boxall,et al.  Pharmaceuticals and personal care products: Research needs for the next decade , 2009, Environmental toxicology and chemistry.

[62]  M. Baldwin,et al.  The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds , 1976 .

[63]  S. Dyer,et al.  Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties. , 2009, Ecotoxicology and environmental safety.

[64]  J. Eland,et al.  The effect of alkyl substitution on ionisation potential , 1971 .

[65]  G. Pfister-Guillouzo,et al.  Spectres photoélectroniques de cyclohexène-2 ones-1 diversement substituées en position 3. Correlations avec la réactivité , 1982 .

[66]  J. Eland Photoelectron spectra of conjugated hydrocarbons and heteromolecules , 1969 .

[67]  Julie B. Zimmerman,et al.  Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity , 2011 .

[68]  R. Wightman,et al.  Electron transfer from aromatic hydrocarbons and their .pi.-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials , 1984 .

[69]  R. Manne,et al.  Spin-orbit interaction in molecular photoelectron spectra An intermediate coupling approach , 1975 .

[70]  Tsunetoshi Kobayashi Conformational Analysis of Terphenyls by Photoelectron Spectroscopy , 1983 .

[71]  S. Lias,et al.  Ionization energies of organic compounds by equilibrium measurements , 1978 .

[72]  Jóhannes Reynisson,et al.  Benchmarking the reliability of QikProp. Correlation between experimental and predicted values , 2008 .

[73]  S. Wallace,et al.  Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules , 1988 .

[74]  T. J. O'Donnell,et al.  Ultraviolet photoelectron studies of volatile nucleoside models. Vertical ionization potential measurements of methylated uridine, thymidine, cytidine, and adenosine , 1981 .

[75]  K. Kimura,et al.  Photoelectron spectra and sum rule consideration: Effect of chlorine substitution on ionization energies for chloroethanes, chloroacetaldehydes and chloroacetyl chlorides , 1975 .

[76]  M. Dewar,et al.  Photoelectron spectra of molecules—IV , 1974 .

[77]  H. Könemann Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationship for 50 industrial pollutants. , 1981, Toxicology.

[78]  Sean Ekins,et al.  Development of Computational Models for Enzymes, Transporters, Channels, and Receptors Relevant to ADME/Tox , 2004 .

[79]  F. Benoit,et al.  Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules , 1977 .

[80]  Dennis R. Peterson,et al.  The environmental fate of phthalate esters: A literature review , 1997 .

[81]  M. Mckee,et al.  Chronic effects of di-2-ethylhexyl phthalate on biochemical composition, survival and reproduction of Daphnia magna , 1987 .

[82]  K. V. Van Look,et al.  A critical analysis of the biological impacts of plasticizers on wildlife , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  D. Gonbeau,et al.  Electronic structure of sulphur compounds VI. Photoelectron spectra of some simple thiocarbonyl compounds , 1974 .

[84]  H. W. Thompson,et al.  Photoelectron spectra of halogenated ethylenes , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.