Optimal two-dimensional triangulations

A triangulation in the plane is a maximal connected plane graph with straight edges. It is thus a plane graph whose bounded faces are triangles. For a fixed set of vertices, there are, in general, exponentially many ways to form a triangulation. Various criteria related to the geometry of triangles are used to define what one could mean by a triangulation that is optimal over all possibilities. The general problem studied in this thesis is the following: given a finite set S of vertices, possibly with some prescribed edges, how can we choose the rest of the edges to obtain an optimal triangulation? For example, we want to compute a min-max angle triangulation of S, i.e., a triangulation whose maximum angle over all its triangles is the smallest among all triangulations of S. This thesis presents a number of new algorithms to construct optimal triangulations useful in engineering the scientific computations, such as finite element and surface interpolation. All algorithms are currently the only ones that construct the defined optimal triangulations in time polynomial in the input size. These results are described in three parts. First, we develop a new algorithmic technique called the edge-insertion paradigm. It computes for a set of n vertices an optimal triangulation defined by some generic criterion. We then deduce that a min-max angle and a max-min height triangulation can be computed in O($n\sp2\ \log n$) time, and a min-max slope and a min-max eccentricity triangulation in cubic time. Second, we show that a min-max length triangulation for a set of n vertices can be computed in quadratic time. Length refers to edge length and is measured by some normed metric such as any $l\sb{p}$ metric. Third, for a given plane graph of n vertices and m non-crossing edges, we prove that there is a set of O($m\sp2n$) points so that, for each adjacent pair of points on an edge, there exists a circle passing through the two points that encloses no other points. This implies an efficient way to construct a Delaunay triangulation that subdivides the plane graph.

[1]  R. Kent Goodrich,et al.  Lawson's triangulation is nearly optimal for controlling error bounds , 1990 .

[2]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[3]  Olivier D. Faugeras,et al.  Representing Stereo Data with the Delaunay Triangulation , 1990, Artif. Intell..

[4]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[5]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[6]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[7]  Nira Dyn,et al.  Algorithms for the construction of data dependent triangulations , 1990 .

[8]  D. T. Lee Relative neighborhood graphs in the Li-metric , 1985, Pattern Recognit..

[9]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[10]  David Eppstein,et al.  Edge insertion for optimal triangulations , 1993, Discret. Comput. Geom..

[11]  Ja Gregory,et al.  Error bounds for linear interpolation on triangles , 1975 .

[12]  Stephan Olariu,et al.  On a Conjecture by Plaisted and Hong , 1988, J. Algorithms.

[13]  Gary H. Meisters,et al.  POLYGONS HAVE EARS , 1975 .

[14]  Elefterios A. Melissaratos,et al.  Coping with inconsistencies: a new approach to produce quality triangulations of polygonal domains with holes , 1992, SCG '92.

[15]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[16]  Klaus Jansen One Strike Against the Min-max Degree Triangulation Problem , 1992, Comput. Geom..

[17]  B. Joe,et al.  Corrections to Lee's visibility polygon algorithm , 1987, BIT.

[18]  Errol L. Lloyd On triangulations of a set of points in the plane , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[19]  Larry L. Schumaker,et al.  Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..

[20]  Dianne Hansford The neutral case for the min-max triangulation , 1990, Comput. Aided Geom. Des..

[21]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[22]  D. Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[24]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[25]  D. Lindholm,et al.  Automatic triangular mesh generation on surfaces of polyhedra , 1983 .

[26]  Shmuel Rippa,et al.  Adaptive Approximation by Piecewise Linear Polynomials on Triangulations of Subsets of Scattered Data , 1992, SIAM J. Sci. Comput..

[27]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[28]  David A. Plaisted,et al.  A Heuristic Triangulation Algorithm , 1987, J. Algorithms.

[29]  William H. Frey,et al.  Mesh relaxation: A new technique for improving triangulations , 1991 .

[30]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[31]  Amr A. Oloufa,et al.  Triangulation Applications in Volume Calculation , 1991 .

[32]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[33]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[34]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[35]  Peter Gilbert New Results on Planar Triangulations. , 1979 .

[36]  Jyrki Katajaien,et al.  The region approach for computing relative neighborhood graphs in the L p metric , 1988 .

[37]  Andrzej Lingas,et al.  Fast Algorithms for Greedy Triangulation , 1990, SWAT.

[38]  John Hershberger,et al.  Animation of Geometric Algorithms: A Video Review , 1993 .

[39]  H. Akima,et al.  On estimating partial derivatives for bivariate interpolation of scattered data , 1984 .

[40]  Nickolas S. Sapidis,et al.  Delaunay triangulation of arbitrarily shaped planar domains , 1991, Comput. Aided Geom. Des..

[41]  R. E. Barnhill,et al.  Three- and four-dimensional surfaces , 1984 .

[42]  R. B. Simpson,et al.  Triangular meshes for regions of complicated shape , 1986 .

[43]  H. Davenport,et al.  A Combinatorial Problem Connected with Differential Equations , 1965 .

[44]  A. Lingas A new heuristic for minimum weight triangulation , 1987 .

[45]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[46]  Mark S. Shephard,et al.  Automatic Mesh Generator for Use in Two‐Dimensional h‐p Analysis , 1990 .

[47]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[48]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[49]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[50]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[51]  David Eppstein,et al.  Triangulating polygons without large angles , 1992, SCG '92.

[52]  Mark S. Shephard,et al.  Approaches to the Automatic Generation and Control of Finite Element Meshes , 1988 .

[53]  Ruei-Chuan Chang,et al.  Computing the constrained relative neighborhood graphs and constrained gabriel graphs in Euclidean plane , 1991, Pattern Recognit..

[54]  Tiow Seng Tan,et al.  A quadratic time algorithm for the minmax length triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[55]  Edelsbrunner Herbert Spatial Triangulations with Dihedral Angle Conditions , 1989 .

[56]  Kenneth J. Supowit,et al.  The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.

[57]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[58]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[59]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[60]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[61]  David Eppstein,et al.  Polynomial-size nonobtuse triangulation of polygons , 1991, SCG '91.

[62]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[63]  C. M. Gold,et al.  Automated contour mapping using triangular element data structures and an interpolant over each irregular triangular domain , 1977, SIGGRAPH '77.

[64]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[65]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[66]  Scott A. Mitchell,et al.  Quality mesh generation in three dimensions , 1992, SCG '92.

[67]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[68]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[69]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .