Integrable discrete hungry systems and their related matrix eigenvalues
暂无分享,去创建一个
Yusaku Yamamoto | Yoshimasa Nakamura | Masashi Iwasaki | Emiko Ishiwata | Akiko Fukuda | Yoshimasa Nakamura | M. Iwasaki | Yusaku Yamamoto | E. Ishiwata | A. Fukuda
[1] Francesco Brenti,et al. Combinatorics and Total Positivity , 1995, J. Comb. Theory A.
[2] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[3] David S. Watkins,et al. Product Eigenvalue Problems , 2005, SIAM Rev..
[4] Yoshimasa Nakamura,et al. Accurate computation of singular values in terms of shifted integrable schemes , 2006 .
[5] Yusaku Yamamoto,et al. Differential qd algorithm for totally nonnegative band matrices: convergence properties and error analysis , 2009, JSIAM Lett..
[6] T. Andô. Totally positive matrices , 1987 .
[7] Yoshimasa Nakamura,et al. Calculating Laplace Transforms in Terms of the Toda Molecule , 1998, SIAM J. Sci. Comput..
[8] S. Yamazaki. On the system of non-linear differential equations yk=yk(yk+1-yk-1) , 1987 .
[9] Daisuke Takahashi,et al. LETTER TO THE EDITOR: Box and ball system with a carrier and ultradiscrete modified KdV equation , 1997 .
[10] Charles A. Micchelli,et al. Total positivity and its applications , 1996 .
[11] Allan Pinkus. Totally Positive Matrices , 2009 .
[12] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[13] Yoshimasa Nakamura,et al. The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues , 2008 .
[14] Moody T. Chu,et al. Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.
[15] Yoshimasa Nakamura,et al. On the convergence of a solution of the discrete Lotka-Volterra system , 2002 .
[16] J. Satsuma,et al. THE TODA MOLECULE EQUATION AND THE ε-ALGORITHM , 1998 .
[17] Martin H. Gutknecht,et al. Lectures On Numerical Mathematics , 1990 .
[18] Heinz Rutishauser,et al. Ein infinitesimales Analogon zum Quotienten-Differenzen-Algorithmus , 1954 .
[19] Y. Itoh. Integrals of a Lotka-Volterra System of Odd Number of Variables , 1987 .
[20] S. Tsujimoto. An extension and discretization of Volterra equation I , 1993 .
[21] Beresford N. Parlett,et al. The New qd Algorithms , 1995, Acta Numerica.
[22] Yoshimasa Nakamura,et al. An application of the discrete Lotka–Volterra system with variable step-size to singular value computation , 2004 .
[23] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[24] Atsushi Nagai,et al. The Toda molecule equation and the epsilon-algorithm , 1998, Math. Comput..
[25] Plamen Koev,et al. Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..
[26] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[27] Yoshimasa Nakamura,et al. Dynamics of the finite Toda molecule over finite fields and a decoding algorithm , 1998 .
[28] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[29] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[30] Al Geist,et al. The BR Eigenvalue Algorithm , 1997, SIAM J. Matrix Anal. Appl..
[31] O. Bogoyavlensky. Integrable discretizations of the KdV equation , 1988 .
[32] Tetsuji Tokihiro,et al. Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization , 1999 .
[33] J. Cooper. TOTAL POSITIVITY, VOL. I , 1970 .