Integrable discrete hungry systems and their related matrix eigenvalues

Recently, some of the authors designed an algorithm, named the dhLV algorithm, for computing complex eigenvalues of a certain class of band matrix. The recursion formula of the dhLV algorithm is based on the discrete hungry Lotka–Volterra (dhLV) system, which is an integrable system. One of the authors has proposed an algorithm, named the multiple dqd algorithm, for computing eigenvalues of a totally nonnegative (TN) band matrix. In this paper, by introducing a theorem on matrix eigenvalues, we first show that the eigenvalues of a TN matrix are also computable by the dhLV algorithm. We next clarify the asymptotic behavior of the discrete hungry Toda (dhToda) equation, which is also an integrable system, and show that a similarity transformation for a TN matrix is given through the dhToda equation. Then, by combining these properties of the dhToda equation, we design a new algorithm, named the dhToda algorithm, for computing eigenvalues of a TN matrix. We also describe the close relationship among the above three algorithms and give numerical examples.

[1]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[2]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[3]  David S. Watkins,et al.  Product Eigenvalue Problems , 2005, SIAM Rev..

[4]  Yoshimasa Nakamura,et al.  Accurate computation of singular values in terms of shifted integrable schemes , 2006 .

[5]  Yusaku Yamamoto,et al.  Differential qd algorithm for totally nonnegative band matrices: convergence properties and error analysis , 2009, JSIAM Lett..

[6]  T. Andô Totally positive matrices , 1987 .

[7]  Yoshimasa Nakamura,et al.  Calculating Laplace Transforms in Terms of the Toda Molecule , 1998, SIAM J. Sci. Comput..

[8]  S. Yamazaki On the system of non-linear differential equations yk=yk(yk+1-yk-1) , 1987 .

[9]  Daisuke Takahashi,et al.  LETTER TO THE EDITOR: Box and ball system with a carrier and ultradiscrete modified KdV equation , 1997 .

[10]  Charles A. Micchelli,et al.  Total positivity and its applications , 1996 .

[11]  Allan Pinkus Totally Positive Matrices , 2009 .

[12]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[13]  Yoshimasa Nakamura,et al.  The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues , 2008 .

[14]  Moody T. Chu,et al.  Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.

[15]  Yoshimasa Nakamura,et al.  On the convergence of a solution of the discrete Lotka-Volterra system , 2002 .

[16]  J. Satsuma,et al.  THE TODA MOLECULE EQUATION AND THE ε-ALGORITHM , 1998 .

[17]  Martin H. Gutknecht,et al.  Lectures On Numerical Mathematics , 1990 .

[18]  Heinz Rutishauser,et al.  Ein infinitesimales Analogon zum Quotienten-Differenzen-Algorithmus , 1954 .

[19]  Y. Itoh Integrals of a Lotka-Volterra System of Odd Number of Variables , 1987 .

[20]  S. Tsujimoto An extension and discretization of Volterra equation I , 1993 .

[21]  Beresford N. Parlett,et al.  The New qd Algorithms , 1995, Acta Numerica.

[22]  Yoshimasa Nakamura,et al.  An application of the discrete Lotka–Volterra system with variable step-size to singular value computation , 2004 .

[23]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[24]  Atsushi Nagai,et al.  The Toda molecule equation and the epsilon-algorithm , 1998, Math. Comput..

[25]  Plamen Koev,et al.  Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..

[26]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[27]  Yoshimasa Nakamura,et al.  Dynamics of the finite Toda molecule over finite fields and a decoding algorithm , 1998 .

[28]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[29]  R. Hirota Discrete Analogue of a Generalized Toda Equation , 1981 .

[30]  Al Geist,et al.  The BR Eigenvalue Algorithm , 1997, SIAM J. Matrix Anal. Appl..

[31]  O. Bogoyavlensky Integrable discretizations of the KdV equation , 1988 .

[32]  Tetsuji Tokihiro,et al.  Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization , 1999 .

[33]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .