Primary surface rupture of the 1950 Tibet-Assam great earthquake along the eastern Himalayan front, India

[1]  R. Jayangondaperumal,et al.  Great earthquake surface ruptures along backthrust of the Janauri anticline, NW Himalaya , 2017 .

[2]  R. Jayangondaperumal,et al.  Paleoseismic evidence of a giant medieval earthquake in the eastern Himalaya , 2016 .

[3]  S. Wesnousky,et al.  Application of UAV Photography to Refining the Slip Rate on the Pyramid Lake Fault Zone, Nevada , 2016 .

[4]  J. Malik,et al.  Active Fault and Paleoseismic Studies in Kangra Valley: Evidence of Surface Rupture of a Great Himalayan 1905 Kangra Earthquake (Mw 7.8), Northwest Himalaya, India , 2015 .

[5]  Jintai Lin,et al.  Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere , 2015 .

[6]  Srikanth Saripalli,et al.  Rapid mapping of ultrafine fault zone topography with structure from motion , 2014 .

[7]  Yann Klinger,et al.  Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust , 2014 .

[8]  Walter M. Szeliga,et al.  Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau , 2014 .

[9]  V. Gahalaut,et al.  Global Positioning System (GPS) Measurements of Crustal Deformation across the Frontal Eastern Himalayan Syntaxis and Seismic‐Hazard Assessment , 2014 .

[10]  B. N. Upreti,et al.  Structural interpretation of the great earthquakes of the last millennium in the central Himalaya , 2013 .

[11]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[12]  J. Mugnier,et al.  Earthquake slip estimation from the scarp geometry of Himalayan Frontal Thrust, western Himalaya: implications for seismic hazard assessment , 2013, International Journal of Earth Sciences.

[13]  R. Jayangondaperumal,et al.  Paleoseismic evidence of a surface rupture along the northwestern Himalayan Frontal Thrust (HFT) , 2013 .

[14]  L. Bollinger,et al.  Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255 , 2012, Nature Geoscience.

[15]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[16]  S. Wesnousky,et al.  Near-Surface Expression of Early to Late Holocene Displacement along the Northeastern Himalayan Frontal Thrust at Marbang Korong Creek, Arunachal Pradesh, India , 2011 .

[17]  G. Hancock,et al.  Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with (137)Cs. , 2011, Journal of environmental radioactivity.

[18]  Takashi Nakata,et al.  Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes , 2010 .

[19]  A. Yin Cenozoic tectonic evolution of Asia : A preliminary synthesis , 2010 .

[20]  J. Angelier,et al.  Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications , 2009 .

[21]  S. Hillier Quantitative Analysis of Clay and other Minerals in Sandstones by X‐Ray Powder Diffraction (XRPD) , 2009 .

[22]  M. Garneau,et al.  Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques. , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[23]  S. Wesnousky,et al.  Long recurrence interval of faulting beyond the 2005 Kashmir earthquake around the northwestern margin of the Indo-Asian collision zone , 2008 .

[24]  S. Acharyya Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas – A review , 2007 .

[25]  Z. Franić,et al.  Long-term investigations of radiocaesium activity concentrations in carp in North Croatia after the Chernobyl accident. , 2007, Journal of environmental radioactivity.

[26]  Hiroyuki Tsutsumi,et al.  Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active Tectonic Implications , 2006 .

[27]  R. Bilham,et al.  Great Himalayan earthquakes and the Tibetan plateau , 2006, Nature.

[28]  R. Briggs,et al.  Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya , 2006 .

[29]  S. Sapkota,et al.  Evidence for a Great Medieval Earthquake (~1100 A.D.) in the Central Himalayas, Nepal , 2005, Science.

[30]  F. Oldfield,et al.  The assessment of 210Pb data from sites with varying sediment accumulation rates , 1983, Hydrobiologia.

[31]  L. Giani,et al.  Vertical distribution and bioavailability of 137Cs in organic and mineral soils , 2003 .

[32]  S. Wesnousky,et al.  Earthquake Recurrence and Rupture Dynamics of Himalayan Frontal Thrust, India , 2001, Science.

[33]  A. Kudō,et al.  Global transport of plutonium from Nagasaki to the Arctic: Review of the Nagasaki Pu investigation and the future , 2001 .

[34]  D. Gavin Estimation of Inbuilt Age in Radiocarbon Ages of Soil Charcoal for Fire History Studies , 2001, Radiocarbon.

[35]  Siobhán Staunton,et al.  Reduced adsorption of caesium on clay minerals caused by various humic substances , 1999 .

[36]  G. Burr,et al.  Sediment deposition rates on the continental margins of the eastern Arabian Sea using 210Pb, 137Cs and 14C. , 1999, The Science of the total environment.

[37]  P. Meyers,et al.  Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates , 1999 .

[38]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[39]  F. Livens,et al.  Factors affecting the sorption and fixation of caesium in acid organic soil , 1996 .

[40]  R. Anderson,et al.  Evaluating the mobility of137Cs,239+240Pu and210Pb from their distributions in laminated lake sediments , 1995 .

[41]  F. Livens,et al.  Total caesium-fixing potentials of acid organic soils , 1995 .

[42]  K. van der Borg,et al.  Accurate Dating of Organic Deposits by AMS 14C Measurement of Macrofossils , 1992, Radiocarbon.

[43]  T. Wallace,et al.  The active tectonics of the eastern Himalayan syntaxis and surrounding regions , 1991 .

[44]  R. Devoy,et al.  Sea-level research : a manual for the collection and evaluation of data , 1988 .

[45]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[46]  P. Molnar,et al.  Active faulting and tectonics of Burma and surrounding regions , 1984 .

[47]  C. Olsen,et al.  Direct analysis of 210Pb in sediment samples: Self-absorption corrections , 1983 .

[48]  D. G. Moore,et al.  Structure, Tectonics, and Geological History of the Northeastern Indian Ocean , 1982 .

[49]  P. Molnar,et al.  Seismic moments of major earthquakes and the average rate of slip in central Asia , 1977 .

[50]  A. Ben-menahem,et al.  The source of the great Assam earthquake — an interplate wedge motion , 1974 .

[51]  E. Goldberg,et al.  Marine geochronology with210Pb , 1972 .

[52]  B. L. Sawhney,et al.  Selective Sorption and Fixation of Cations by Clay Minerals: A Review , 1972 .

[53]  B. L. Sawi-Iney SELECTIVE SORPTION AND FIXATION OF CATIONS BY CLAY MINERALS: A REVIEW , 1972 .

[54]  M. Meybeck,et al.  Geochronology of lake sediments , 1971 .

[55]  H. Barker,et al.  Radiocarbon Dating , 1971, Nature.

[56]  J. Brune,et al.  Excitation of mantle Rayleigh waves of period 100 seconds as a function of magnitude , 1967 .

[57]  Pierre E. Biscaye,et al.  Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans , 1965 .

[58]  E. H. Willis,et al.  Dating of Humus Podzols By Residual Radiocarbon Activity , 1964, Nature.

[59]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.

[60]  J. A. Udden Mechanical composition of clastic sediments , 1914 .