Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations

We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionally stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.

[1]  Chunfeng Zhou,et al.  Sharp-interface limit of the Cahn–Hilliard model for moving contact lines , 2010, Journal of Fluid Mechanics.

[2]  H. Herzog,et al.  Lifetime of carbon capture and storage as a climate-change mitigation technology , 2012, Proceedings of the National Academy of Sciences.

[3]  B. Schmitz,et al.  How snapping shrimp snap: through cavitating bubbles. , 2000, Science.

[4]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[5]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[6]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[7]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[8]  Richard D. James,et al.  The propagation of phase boundaries in elastic bars , 1980 .

[9]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[10]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[11]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  Philippe G. LeFloch,et al.  Kinetic functions in magnetohydrodynamics with resistivity and Hall effect , 2009 .

[16]  Michael A. Scott,et al.  T-splines as a design-through-analysis technology , 2011 .

[17]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[18]  G. Kuiper,et al.  Cavitation inception on ship propeller models , 1981 .

[19]  J. E. Dunn,et al.  On the Thermomechanics of Interstitial Working , 1985 .

[20]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[21]  Bernardo Cockburn,et al.  A Model Numerical Scheme for the Propagation of phase Transitions in Solids , 1996, SIAM J. Sci. Comput..

[22]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[23]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[24]  P. Voorhees,et al.  Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .

[25]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[26]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[27]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[28]  J. R. Ockendon,et al.  SIMILARITY, SELF‐SIMILARITY AND INTERMEDIATE ASYMPTOTICS , 1980 .

[29]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[30]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[31]  James Serrin,et al.  The Area Rule for Simple Fluid Phase Transitions , 2008 .

[32]  Chi-Wang Shu,et al.  A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting , 1992 .

[33]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[34]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[35]  Shi Jin,et al.  Numerical Integrations of Systems of Conservation Laws of Mixed Type , 1995, SIAM J. Appl. Math..

[36]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[37]  M. Kotschote Strong solutions for a compressible fluid model of Korteweg type , 2008 .

[38]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[39]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[40]  Graham F. Carey,et al.  AN ENTROPY VARIABLE FORMULATION AND APPLICATIONS FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS , 1996 .

[41]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[42]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[43]  Philippe G. LeFloch,et al.  Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues , 2010, 1002.2950.

[44]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[45]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[46]  Irena Lasiecka,et al.  Control Methods in PDE-Dynamical Systems , 2007 .

[47]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[48]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[49]  S. Benzoni-Gavage,et al.  Stability of Subsonic Planar Phase Boundaries in a van der Waals Fluid , 1999 .

[50]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[51]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[52]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[53]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[54]  J. Tinsley Oden,et al.  GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING , 2010 .

[55]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[56]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[57]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[58]  D. Bresch,et al.  On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems , 2003 .

[59]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[60]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[61]  Raphaël Danchin,et al.  Existence of solutions for compressible fluid models of Korteweg type , 2001 .

[62]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[63]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[64]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[65]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[66]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[67]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[68]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[69]  William Gropp,et al.  PETSc 2.0 users manual , 2000 .

[70]  Eduard Feireisl,et al.  Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law , 2002 .

[71]  G. I. Barenblatt,et al.  Similarity, Self-Similarity and Intermediate Asymptotics , 1979 .

[72]  Christophe Schlick,et al.  Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.