Parallel Batch-Dynamic k-Clique Counting

In this paper, we study new batch-dynamic algorithms for $k$-clique counting, which are dynamic algorithms where the updates are batches of edge insertions and deletions. We study this problem in the parallel setting, where the goal is to obtain algorithms with low (poly-logarithmic) depth. Our first result is a new parallel batch-dynamic triangle counting algorithm with $O(\Delta\sqrt{\Delta+m})$ amortized work and $O(\log^* (\Delta+m))$ depth with high probability (w.h.p.), and $O(\Delta+m)$ space for a batch of $\Delta$ edge insertions or deletions. Our second result is a simple parallel batch-dynamic $k$-clique counting algorithm that uses a newly developed parallel $k$-clique counting algorithm to bootstrap itself, by enumerating smaller cliques, and intersecting them with the batch. Instantiating this idea gives a simple batch-dynamic algorithm running in $O(\Delta(m+\Delta)\alpha^{k-4})$ expected work and $O(\log^{k-2} n)$ depth w.h.p., all in $O(m + \Delta)$ space. Our third result is an algebraic algorithm based on parallel fast matrix multiplication. Assuming that a parallel fast matrix multiplication algorithm exists with parallel matrix multiplication constant $\omega_p$, the same algorithm solves dynamic $k$-clique counting with $O\left(\min\left(\Delta m^{\frac{(2k - 1)\omega_p}{3(\omega_p + 1)}}, (\Delta+m)^{\frac{2(k + 1)\omega_p}{3(\omega_p + 1)}}\right)\right)$ amortized work, $O(\log (\Delta+m))$ depth, and $O\left((\Delta+m)^{\frac{2(k + 1)\omega_p}{3(\omega_p + 1)}}\right)$ space.

[1]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[2]  Richard Peng,et al.  Parallel Batch-Dynamic Graphs: Algorithms and Lower Bounds , 2019, SODA.

[3]  Vachik S. Dave,et al.  E-CLoG: Counting edge-centric local graphlets , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[4]  Hung Q. Ngo,et al.  Counting Triangles under Updates in Worst-Case Optimal Time , 2018, ICDT.

[5]  Zdenek Dvorak,et al.  A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs , 2012, WADS.

[6]  Ami Paz,et al.  Fast and Simple Deterministic Algorithms for Highly-Dynamic Networks , 2019, ArXiv.

[7]  Guy E. Blelloch,et al.  Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable , 2018, SPAA.

[8]  Fabrizio Luccio,et al.  Batch Dynamic Algorithms for Two Graph Problems , 1994, PARLE.

[9]  Uzi Vishkin,et al.  Towards a theory of nearly constant time parallel algorithms , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[10]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[11]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[12]  Christos Faloutsos,et al.  R-MAT: A Recursive Model for Graph Mining , 2004, SDM.

[13]  AmmarKhaled,et al.  Distributed evaluation of subgraph queries using worst-case optimal low-memory dataflows , 2018, VLDB 2018.

[14]  Uzi Vishkin,et al.  On Parallel Hashing and Integer Sorting , 1991, J. Algorithms.

[15]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[16]  Kun-Lung Wu,et al.  Work‐efficient parallel union‐find , 2018, Concurr. Comput. Pract. Exp..

[17]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[18]  David Eppstein,et al.  Extended h-Index Parameterized Data Structures for Computing Dynamic Subgraph Statistics , 2010, ArXiv.

[19]  David A. Bader,et al.  Exact and Parallel Triangle Counting in Dynamic Graphs , 2017, 2017 IEEE 24th International Conference on High Performance Computing (HiPC).

[20]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[21]  Chin-Wan Chung,et al.  An efficient MapReduce algorithm for counting triangles in a very large graph , 2013, CIKM.

[22]  Maximilien Danisch,et al.  Listing k-cliques in Sparse Real-World Graphs* , 2018, WWW.

[23]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[24]  Guy E. Blelloch,et al.  Phase-concurrent hash tables for determinism , 2014, SPAA.

[25]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[26]  Guy E. Blelloch,et al.  Batch-Parallel Euler Tour Trees , 2018, ALENEX.

[27]  Ryan A. Rossi,et al.  Graphlet decomposition: framework, algorithms, and applications , 2015, Knowledge and Information Systems.

[28]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[29]  Tsvi Kopelowitz,et al.  Improved Worst-Case Deterministic Parallel Dynamic Minimum Spanning Forest , 2018, SPAA.

[30]  Keren Censor-Hillel,et al.  Distributed Detection of Cliques in Dynamic Networks , 2019, ICALP.

[31]  Fabian Kuhn,et al.  Local Distributed Algorithms in Highly Dynamic Networks , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[32]  Virginia Vassilevska Williams,et al.  Efficient algorithms for clique problems , 2009, Inf. Process. Lett..

[33]  Alexandros G. Dimakis,et al.  Distributed Estimation of Graph 4-Profiles , 2016, WWW.

[34]  Umut A. Acar,et al.  Brief Announcement: Parallel Dynamic Tree Contraction via Self-Adjusting Computation , 2017, SPAA.

[35]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  David A. Bader,et al.  Massive streaming data analytics: A case study with clustering coefficients , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).

[37]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[38]  Friedrich Eisenbrand,et al.  On the complexity of fixed parameter clique and dominating set , 2004, Theor. Comput. Sci..

[39]  Krzysztof Onak,et al.  Fully Dynamic Maximal Independent Set with Sublinear in n Update Time , 2018, SODA.

[40]  Stephen R. Tate,et al.  Dynamic parallel tree contraction (extended abstract) , 1994, SPAA '94.

[41]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[42]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[43]  Madhav V. Marathe,et al.  PATRIC: a parallel algorithm for counting triangles in massive networks , 2013, CIKM.

[44]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[45]  Silvio Lattanzi,et al.  Dynamic Algorithms for the Massively Parallel Computation Model , 2019, SPAA.

[46]  Monika Henzinger,et al.  Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture , 2015, STOC.

[47]  David Eppstein,et al.  Journal of Graph Algorithms and Applications the H-index of a Graph and Its Application to Dynamic Subgraph Statistics , 2022 .

[48]  Alon Itai,et al.  Finding a minimum circuit in a graph , 1977, STOC '77.

[49]  Sergei Vassilvitskii,et al.  Counting triangles and the curse of the last reducer , 2011, WWW.

[50]  Julian Shun,et al.  Low-latency graph streaming using compressed purely-functional trees , 2019, PLDI.

[51]  Irene Finocchi,et al.  Clique Counting in MapReduce , 2014, ACM J. Exp. Algorithmics.

[52]  Guy E. Blelloch,et al.  Brief announcement: the problem based benchmark suite , 2012, SPAA '12.

[53]  Ali Pinar,et al.  ESCAPE: Efficiently Counting All 5-Vertex Subgraphs , 2016, WWW.

[54]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[55]  R. Hanneman Introduction to Social Network Methods , 2001 .

[56]  Michael T. Goodrich,et al.  External-Memory Network Analysis Algorithms for Naturally Sparse Graphs , 2011, ESA.

[57]  Uzi Vishkin,et al.  Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques , 2008 .

[58]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[59]  Rasmus Pagh,et al.  MapReduce Triangle Enumeration With Guarantees , 2014, CIKM.

[60]  Janez Demsar,et al.  A combinatorial approach to graphlet counting , 2014, Bioinform..

[61]  Keren Censor-Hillel,et al.  Optimal Dynamic Distributed MIS , 2015, PODC.

[62]  Kunle Olukotun,et al.  EmptyHeaded: A Relational Engine for Graph Processing , 2015, ACM Trans. Database Syst..

[63]  Sajal K. Das,et al.  An o(n) Work EREW Parallel Algorithm for Updating MST , 1994, ESA.

[64]  Julian Shun,et al.  Parallel Clique Counting and Peeling Algorithms , 2020, ACDA.

[65]  Julian Shun,et al.  Multicore triangle computations without tuning , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[66]  Josh Alman Linear algebraic techniques in algorithms and complexity , 2019 .

[67]  Matthieu Latapy,et al.  Main-memory triangle computations for very large (sparse (power-law)) graphs , 2008, Theor. Comput. Sci..

[68]  Markus Bläser,et al.  Fast Matrix Multiplication , 2013, Theory Comput..

[69]  Seshadhri Comandur,et al.  A Fast and Provable Method for Estimating Clique Counts Using Turán's Theorem , 2016, WWW.

[70]  David A. Bader,et al.  STINGER: High performance data structure for streaming graphs , 2012, 2012 IEEE Conference on High Performance Extreme Computing.

[71]  Shahbaz Khan,et al.  Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs , 2017, SPAA.