Evolution of the central complex in the arthropod brain with respect to the visual system.

Modular midline neuropils, termed arcuate body (Chelicerata, Onychophora) or central body (Myriapoda, Crustacea, Insecta), are a prominent feature of the arthropod brain. In insects and crayfish, the central body is connected to a second midline-spanning neuropil, the protocerebral bridge. Both structures are collectively termed central complex. While some investigators have assumed that central and arcuate bodies are homologous, others have questioned this view. Stimulated by recent evidence for a role of the central complex in polarization vision and object recognition, the architectures of midline neuropils and their associations with the visual system were compared across panarthropods. In chelicerates and onychophorans, second-order neuropils subserving the median eyes are associated with the arcuate body. The central complex of decapods and insects, instead, receives indirect input from the lateral (compound) eye visual system, and connections with median eye (ocellar) projections are present. Together with other characters these data are consistent with a common origin of arcuate bodies and central complexes from an ancestral modular midline neuropil but, depending on the choice of characters, the protocerebral bridge or the central body shows closer affinity with the arcuate body. A possible common role of midline neuropils in azimuth-dependent sensory and motor tasks is discussed.

[1]  O. Breidbach,et al.  Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor , 1992, Cell and Tissue Research.

[2]  R Wehner,et al.  Oceili: A Celestial Compass in the Desert Ant Cataglyphis , 1985, Science.

[3]  Dimitrios Lambrinos,et al.  Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. , 2008, Journal of neurophysiology.

[4]  R. Loesel Comparative Morphology of Central Neuropils in the Brain of Arthropods and Its Evolutionary and Functional Implications , 2004, Acta biologica Hungarica.

[5]  U. Homberg Distribution of Neurotransmitters in the Insect Brain , 1994 .

[6]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[7]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[8]  R. Elofsson,et al.  Comparative anatomy of the crustacean brain , 1987 .

[9]  U. Homberg In search of the sky compass in the insect brain , 2004, Naturwissenschaften.

[10]  F. Barth,et al.  Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building , 1991, Journal of morphology.

[11]  S. Harzsch,et al.  Immunohistochemical localization of neurotransmitters in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda , 2005 .

[12]  F. Barth,et al.  Two visual systems in one brain: Neuropils serving the principal eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.

[13]  O. Breidbach,et al.  Development of locustatachykinin immunopositive neurons in the central complex of the beetle Tenebrio molitor , 1996, The Journal of comparative neurology.

[14]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[15]  J. Hildebrand,et al.  Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity , 1990, Cell and Tissue Research.

[16]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[17]  Olaf Breidbach,et al.  The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach , 1995, Experientia Supplementum.

[18]  Franz Huber Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae) , 1960, Zeitschrift für vergleichende Physiologie.

[19]  R. Sandeman,et al.  Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. , 1990, Journal of neurobiology.

[20]  Gonzalo Giribet,et al.  Evolutionary biology of centipedes (Myriapoda: Chilopoda). , 2007, Annual review of entomology.

[21]  R. Loesel,et al.  Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida) , 2008, Cell and Tissue Research.

[22]  G. Fleissner,et al.  Neurobiology of a Circadian Clock in the Visual System of Scorpions , 1985 .

[23]  U. Homberg,et al.  Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria , 2006, Journal of Comparative Physiology A.

[24]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[25]  L. Strong,et al.  Arthropod brain (its evolution, development, structure and functions): A. P. Gupta (Ed.), 588 pp. Published by John Wiley & Sons, New York, 1987. Price £60. ISBN 0-471-82811-4 , 1988 .

[26]  F. Barth,et al.  Neurobiology of Arachnids , 1985, Springer Berlin Heidelberg.

[27]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[28]  J. Shultz,et al.  Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. , 2005, Molecular phylogenetics and evolution.

[29]  N. Strausfeld The evolution of crustacean and insect optic lobes and the origins of chiasmata , 2005 .

[30]  Uwe Homberg,et al.  Interneurones of the central complex in the bee brain (Apis mellifera, L.) , 1985 .

[31]  Uwe Homberg,et al.  Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria) , 1997, Cell and Tissue Research.

[32]  H. Dircksen,et al.  Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species , 2004, Cell and Tissue Research.

[33]  M. Utting,et al.  Central complex in the brain of crayfish and its possible homology with that of insects , 2000, The Journal of comparative neurology.

[34]  R. Elofsson The frontal eyes of crustaceans. , 2006, Arthropod structure & development.

[35]  J. Shultz,et al.  Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. , 2004, Molecular phylogenetics and evolution.

[36]  N. Strausfeld,et al.  The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. , 2006, Arthropod structure & development.

[37]  R. Sandeman,et al.  Atlas of serotonin‐containing neurons in the optic lobes and brain of the crayfish, Cherax destructor , 1988, The Journal of comparative neurology.

[38]  Research on the structure and physiology of the eyes of a lycosid spider. The role of different pairs of eyes in astronomical orientation , 1964 .

[39]  R. Wehner,et al.  Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue? , 2003, Journal of Comparative Physiology A.

[40]  G. Boyan,et al.  Organization of the commissural fibers in the adult brain of the locust , 1993, The Journal of comparative neurology.

[41]  Franz Huber,et al.  Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.

[42]  J Ortega-Escobar,et al.  Anterior Median Eyes of Lycosa tarentula (Araneae, Lycosidae) Detect Polarized Light: Behavioral Experiments and Electroretinographic Analysis , 1999 .

[43]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[44]  N. Elsner,et al.  Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior , 2005, The Journal of comparative neurology.

[45]  J. Milde Visual responses of interneurones in the posterior median protocerebrum and the central complex of the honeybee Apis mellifera , 1988 .

[46]  W. Goll Strukturuntersuchungen am Gehirn von Formica , 1967, Zeitschrift für Morphologie und Ökologie der Tiere.

[47]  N. Strausfeld,et al.  Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage , 2006, Proceedings of the Royal Society B: Biological Sciences.

[48]  N. Strausfeld,et al.  Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.

[49]  D. Otto Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.

[50]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[51]  H. Wolf,et al.  From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept , 2005, Development Genes and Evolution.

[52]  O. Breidbach Is the evolution of arthropod brains convergent , 1995 .

[53]  M Heisenberg,et al.  THE CENTRAL COMPLEX OF DROSOPHILA MELANOGASTER IS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENE ELLIPSOID BODY OPEN , 1994, Journal of neurogenetics.

[54]  Gonzalo Giribet,et al.  Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci , 2004 .

[55]  R. Sandeman,et al.  Morphology of the Brain of Crayfish, Crabs, and Spiny Lobsters: A Common Nomenclature for Homologous Structures. , 1992, The Biological bulletin.

[56]  Michael Kunst,et al.  Muscarinic Excitation in Grasshopper Song Control Circuits Is Limited by Acetylcholinesterase Activity , 2007, Zoological science.

[57]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[58]  Georg Mayer,et al.  Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? , 2006, Arthropod structure & development.

[59]  Gonzalo Giribet,et al.  Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology , 2006, Proceedings of the Royal Society B: Biological Sciences.

[60]  M. Mizunami,et al.  Morphology of higher‐order ocellar interneurons in the cockroach brain , 1995, The Journal of comparative neurology.

[61]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[62]  Stefan Richter,et al.  The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea , 2002 .

[63]  M. Wadepuhl Control of Grasshopper Singing Behavior by the Brain: Responses to Electrical Stimulation1 , 2010 .

[64]  M Heisenberg,et al.  Behavior‐dependent activity labeling in the central complex of Drosophila during controlled visual stimulation , 1994, The Journal of comparative neurology.

[65]  S. Richter,et al.  The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. , 2007, Arthropod structure & development.

[66]  M. Land Orientation by jumping spiders in the absence of visual feedback. , 1971, The Journal of experimental biology.

[67]  Makoto Mizunami,et al.  Information Processing in the Insect Ocellar System: Comparative Approaches t o the Evolution of Visual Processing and Neural Circuits a a This chapter is dedicated to Prof. Hideki Tateda, Shimonoseki City University, Japan. , 1995 .

[68]  D. Tautz,et al.  Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods , 1995, Nature.

[69]  U. Homberg,et al.  Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.

[70]  G. Edgecombe Morphological data, extant Myriapoda, and the myriapod stem-group , 2004 .

[71]  N. Strausfeld Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates , 1998, Brain, Behavior and Evolution.

[72]  Martin Fanenbruck,et al.  The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Postembryonic development of γ‐aminobutyric acid‐like Immunoreactivity in the brain of the sphinx moth Manduca sexta , 1994 .

[74]  M Heisenberg,et al.  No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. , 1992, Journal of neurogenetics.

[75]  M. E. Power,et al.  The brain of Drosophila melanogaster , 1943 .

[76]  M Heisenberg,et al.  Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blindH31. , 1986, Journal of neurogenetics.

[77]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Armin Pross Untersuchungen zur entwicklungsgeschichte der araneae [Pardosa Hortensis (Thorell)] unter besonderer berücksichtigung des vorderen prosomaabschnittes , 1966, Zeitschrift für Morphologie und Ökologie der Tiere.

[79]  P. Ax The phylogenetic system of the Metazoa , 2000 .

[80]  M. Heisenberg,et al.  Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster , 1999, Journal of Comparative Physiology A.

[81]  P. Weygoldt Ontogeny of the Arachnid Central Nervous System , 1985 .

[82]  Bertil Hanström Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.

[83]  P. Görner Die Orientierung der Trichterspinne nach polarisiertem Licht , 1962, Zeitschrift für vergleichende Physiologie.

[84]  B. Calman,et al.  Central projections of Limulus photoreceptor cells revealed by a photoreceptor‐specific monoclonal antibody , 1991, The Journal of comparative neurology.

[85]  O. Breidbach,et al.  Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones): principal organization, GABA-like and serotonin-immunohistochemistry , 1993 .

[86]  A. Schmid,et al.  Different functions of different eye types in the spider Cupiennius salei. , 1998, The Journal of experimental biology.

[87]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[88]  Uwe Homberg,et al.  Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.

[89]  G. Boyan,et al.  Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. , 2008, Arthropod structure & development.

[90]  Friedrich G. Barth,et al.  Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance , 1982, Behavioral Ecology and Sociobiology.

[91]  U. Homberg,et al.  Neuropeptides in interneurons of the insect brain , 2006, Cell and Tissue Research.

[92]  K. Schildberger,et al.  Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus , 2004, Cell and Tissue Research.

[93]  V. Hartenstein,et al.  Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa , 2003, The Journal of comparative neurology.

[94]  S. Harzsch,et al.  An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. , 2002, Arthropod structure & development.

[95]  R. Strauss,et al.  Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. , 2001, Journal of neurobiology.

[96]  J. Mallatt,et al.  Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.

[97]  A. Stollewerk,et al.  Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. , 2006, Integrative and comparative biology.

[98]  D. J. Aidley Nervous system : structure and motor function , 1985 .

[99]  P. Görner,et al.  Homing Behavior and Orientation in the Funnel-Web Spider, Agelena labyrinthica Clerck , 1985 .

[100]  O. Breidbach,et al.  Comparative aspects of the chelicerate nervous systems , 1995 .

[101]  D. Nässel Neuroactive Substances in the Insect CNS , 1987 .

[102]  A. Hassanin Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. , 2006, Molecular Phylogenetics and Evolution.

[103]  S. Harzsch,et al.  A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships , 2005 .

[104]  Ann-Shyn Chiang,et al.  Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body , 2007, Nature Neuroscience.

[105]  R. Ritzmann,et al.  Descending control of turning behavior in the cockroach, Blaberus discoidalis , 2007, Journal of Comparative Physiology A.

[106]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[107]  F. Barth,et al.  Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida) , 1984, Zoomorphology.

[108]  D. Nässel Neuropeptides in the insect brain: a review , 1993, Cell and Tissue Research.

[109]  J. L. Williams,et al.  Anatomical studies of the insect central nervous system: A ground‐plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera) , 2009 .

[110]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[111]  R. Elofsson,et al.  CENTRAL NERVOUS SYSTEM OF HUTCHINSONIELLA MACRACANTHA (CEPHALOCARIDA) , 1990 .

[112]  J. Bond,et al.  Current status of the Myriapod class diplopoda (millipedes): taxonomic diversity and phylogeny. , 2007, Annual review of entomology.

[113]  G. Boyan,et al.  Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts , 2005 .

[114]  Peter Görner,et al.  Die optische und kinästhetische Orientierung der Trichterspinne Agelena Labyrinthica (Cl.) , 1958, Zeitschrift für vergleichende Physiologie.

[115]  S. Harzsch,et al.  Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish , 2007, Cell and Tissue Research.

[116]  J. Bacon,et al.  Comparative anatomy of serotonin‐like immunoreactive neurons in isopods: Putative homologues in several species , 1994, The Journal of comparative neurology.

[117]  U. Homberg,et al.  Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects , 1991, Cell and Tissue Research.