Evolution of the central complex in the arthropod brain with respect to the visual system.
暂无分享,去创建一个
[1] O. Breidbach,et al. Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor , 1992, Cell and Tissue Research.
[2] R Wehner,et al. Oceili: A Celestial Compass in the Desert Ant Cataglyphis , 1985, Science.
[3] Dimitrios Lambrinos,et al. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. , 2008, Journal of neurophysiology.
[4] R. Loesel. Comparative Morphology of Central Neuropils in the Brain of Arthropods and Its Evolutionary and Functional Implications , 2004, Acta biologica Hungarica.
[5] U. Homberg. Distribution of Neurotransmitters in the Insect Brain , 1994 .
[6] T. Labhart,et al. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.
[7] J. Shultz,et al. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.
[8] R. Elofsson,et al. Comparative anatomy of the crustacean brain , 1987 .
[9] U. Homberg. In search of the sky compass in the insect brain , 2004, Naturwissenschaften.
[10] F. Barth,et al. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building , 1991, Journal of morphology.
[11] S. Harzsch,et al. Immunohistochemical localization of neurotransmitters in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda , 2005 .
[12] F. Barth,et al. Two visual systems in one brain: Neuropils serving the principal eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.
[13] O. Breidbach,et al. Development of locustatachykinin immunopositive neurons in the central complex of the beetle Tenebrio molitor , 1996, The Journal of comparative neurology.
[14] Uwe Homberg,et al. Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.
[15] J. Hildebrand,et al. Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity , 1990, Cell and Tissue Research.
[16] M. Heisenberg,et al. Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.
[17] Olaf Breidbach,et al. The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach , 1995, Experientia Supplementum.
[18] Franz Huber. Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae) , 1960, Zeitschrift für vergleichende Physiologie.
[19] R. Sandeman,et al. Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. , 1990, Journal of neurobiology.
[20] Gonzalo Giribet,et al. Evolutionary biology of centipedes (Myriapoda: Chilopoda). , 2007, Annual review of entomology.
[21] R. Loesel,et al. Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida) , 2008, Cell and Tissue Research.
[22] G. Fleissner,et al. Neurobiology of a Circadian Clock in the Visual System of Scorpions , 1985 .
[23] U. Homberg,et al. Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria , 2006, Journal of Comparative Physiology A.
[24] Uwe Homberg,et al. Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.
[25] L. Strong,et al. Arthropod brain (its evolution, development, structure and functions): A. P. Gupta (Ed.), 588 pp. Published by John Wiley & Sons, New York, 1987. Price £60. ISBN 0-471-82811-4 , 1988 .
[26] F. Barth,et al. Neurobiology of Arachnids , 1985, Springer Berlin Heidelberg.
[27] N. Strausfeld. A brain region in insects that supervises walking. , 1999, Progress in brain research.
[28] J. Shultz,et al. Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. , 2005, Molecular phylogenetics and evolution.
[29] N. Strausfeld. The evolution of crustacean and insect optic lobes and the origins of chiasmata , 2005 .
[30] Uwe Homberg,et al. Interneurones of the central complex in the bee brain (Apis mellifera, L.) , 1985 .
[31] Uwe Homberg,et al. Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria) , 1997, Cell and Tissue Research.
[32] H. Dircksen,et al. Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species , 2004, Cell and Tissue Research.
[33] M. Utting,et al. Central complex in the brain of crayfish and its possible homology with that of insects , 2000, The Journal of comparative neurology.
[34] R. Elofsson. The frontal eyes of crustaceans. , 2006, Arthropod structure & development.
[35] J. Shultz,et al. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. , 2004, Molecular phylogenetics and evolution.
[36] N. Strausfeld,et al. The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. , 2006, Arthropod structure & development.
[37] R. Sandeman,et al. Atlas of serotonin‐containing neurons in the optic lobes and brain of the crayfish, Cherax destructor , 1988, The Journal of comparative neurology.
[39] R. Wehner,et al. Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue? , 2003, Journal of Comparative Physiology A.
[40] G. Boyan,et al. Organization of the commissural fibers in the adult brain of the locust , 1993, The Journal of comparative neurology.
[41] Franz Huber,et al. Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.
[42] J Ortega-Escobar,et al. Anterior Median Eyes of Lycosa tarentula (Araneae, Lycosidae) Detect Polarized Light: Behavioral Experiments and Electroretinographic Analysis , 1999 .
[43] Uwe Homberg,et al. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.
[44] N. Elsner,et al. Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior , 2005, The Journal of comparative neurology.
[45] J. Milde. Visual responses of interneurones in the posterior median protocerebrum and the central complex of the honeybee Apis mellifera , 1988 .
[46] W. Goll. Strukturuntersuchungen am Gehirn von Formica , 1967, Zeitschrift für Morphologie und Ökologie der Tiere.
[47] N. Strausfeld,et al. Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage , 2006, Proceedings of the Royal Society B: Biological Sciences.
[48] N. Strausfeld,et al. Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.
[49] D. Otto. Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.
[50] Stanley Heinze,et al. Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.
[51] H. Wolf,et al. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept , 2005, Development Genes and Evolution.
[52] O. Breidbach. Is the evolution of arthropod brains convergent , 1995 .
[53] M Heisenberg,et al. THE CENTRAL COMPLEX OF DROSOPHILA MELANOGASTER IS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENE ELLIPSOID BODY OPEN , 1994, Journal of neurogenetics.
[54] Gonzalo Giribet,et al. Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci , 2004 .
[55] R. Sandeman,et al. Morphology of the Brain of Crayfish, Crabs, and Spiny Lobsters: A Common Nomenclature for Homologous Structures. , 1992, The Biological bulletin.
[56] Michael Kunst,et al. Muscarinic Excitation in Grasshopper Song Control Circuits Is Limited by Acetylcholinesterase Activity , 2007, Zoological science.
[57] C. Nielsen. Animal Evolution: Interrelationships of the Living Phyla , 1995 .
[58] Georg Mayer,et al. Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? , 2006, Arthropod structure & development.
[59] Gonzalo Giribet,et al. Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology , 2006, Proceedings of the Royal Society B: Biological Sciences.
[60] M. Mizunami,et al. Morphology of higher‐order ocellar interneurons in the cockroach brain , 1995, The Journal of comparative neurology.
[61] I. H. Öğüş,et al. NATO ASI Series , 1997 .
[62] Stefan Richter,et al. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea , 2002 .
[63] M. Wadepuhl. Control of Grasshopper Singing Behavior by the Brain: Responses to Electrical Stimulation1 , 2010 .
[64] M Heisenberg,et al. Behavior‐dependent activity labeling in the central complex of Drosophila during controlled visual stimulation , 1994, The Journal of comparative neurology.
[65] S. Richter,et al. The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. , 2007, Arthropod structure & development.
[66] M. Land. Orientation by jumping spiders in the absence of visual feedback. , 1971, The Journal of experimental biology.
[67] Makoto Mizunami,et al. Information Processing in the Insect Ocellar System: Comparative Approaches t o the Evolution of Visual Processing and Neural Circuits a a This chapter is dedicated to Prof. Hideki Tateda, Shimonoseki City University, Japan. , 1995 .
[68] D. Tautz,et al. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods , 1995, Nature.
[69] U. Homberg,et al. Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.
[70] G. Edgecombe. Morphological data, extant Myriapoda, and the myriapod stem-group , 2004 .
[71] N. Strausfeld. Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates , 1998, Brain, Behavior and Evolution.
[72] Martin Fanenbruck,et al. The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[73] Postembryonic development of γ‐aminobutyric acid‐like Immunoreactivity in the brain of the sphinx moth Manduca sexta , 1994 .
[74] M Heisenberg,et al. No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. , 1992, Journal of neurogenetics.
[75] M. E. Power,et al. The brain of Drosophila melanogaster , 1943 .
[76] M Heisenberg,et al. Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blindH31. , 1986, Journal of neurogenetics.
[77] R. Strauss,et al. A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[78] Armin Pross. Untersuchungen zur entwicklungsgeschichte der araneae [Pardosa Hortensis (Thorell)] unter besonderer berücksichtigung des vorderen prosomaabschnittes , 1966, Zeitschrift für Morphologie und Ökologie der Tiere.
[79] P. Ax. The phylogenetic system of the Metazoa , 2000 .
[80] M. Heisenberg,et al. Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster , 1999, Journal of Comparative Physiology A.
[81] P. Weygoldt. Ontogeny of the Arachnid Central Nervous System , 1985 .
[82] Bertil Hanström. Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.
[83] P. Görner. Die Orientierung der Trichterspinne nach polarisiertem Licht , 1962, Zeitschrift für vergleichende Physiologie.
[84] B. Calman,et al. Central projections of Limulus photoreceptor cells revealed by a photoreceptor‐specific monoclonal antibody , 1991, The Journal of comparative neurology.
[85] O. Breidbach,et al. Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones): principal organization, GABA-like and serotonin-immunohistochemistry , 1993 .
[86] A. Schmid,et al. Different functions of different eye types in the spider Cupiennius salei. , 1998, The Journal of experimental biology.
[87] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[88] Uwe Homberg,et al. Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.
[89] G. Boyan,et al. Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. , 2008, Arthropod structure & development.
[90] Friedrich G. Barth,et al. Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance , 1982, Behavioral Ecology and Sociobiology.
[91] U. Homberg,et al. Neuropeptides in interneurons of the insect brain , 2006, Cell and Tissue Research.
[92] K. Schildberger,et al. Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus , 2004, Cell and Tissue Research.
[93] V. Hartenstein,et al. Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa , 2003, The Journal of comparative neurology.
[94] S. Harzsch,et al. An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. , 2002, Arthropod structure & development.
[95] R. Strauss,et al. Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. , 2001, Journal of neurobiology.
[96] J. Mallatt,et al. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.
[97] A. Stollewerk,et al. Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. , 2006, Integrative and comparative biology.
[98] D. J. Aidley. Nervous system : structure and motor function , 1985 .
[99] P. Görner,et al. Homing Behavior and Orientation in the Funnel-Web Spider, Agelena labyrinthica Clerck , 1985 .
[100] O. Breidbach,et al. Comparative aspects of the chelicerate nervous systems , 1995 .
[101] D. Nässel. Neuroactive Substances in the Insect CNS , 1987 .
[102] A. Hassanin. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. , 2006, Molecular Phylogenetics and Evolution.
[103] S. Harzsch,et al. A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships , 2005 .
[104] Ann-Shyn Chiang,et al. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body , 2007, Nature Neuroscience.
[105] R. Ritzmann,et al. Descending control of turning behavior in the cockroach, Blaberus discoidalis , 2007, Journal of Comparative Physiology A.
[106] R. Strauss. The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.
[107] F. Barth,et al. Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida) , 1984, Zoomorphology.
[108] D. Nässel. Neuropeptides in the insect brain: a review , 1993, Cell and Tissue Research.
[109] J. L. Williams,et al. Anatomical studies of the insect central nervous system: A ground‐plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera) , 2009 .
[110] M. Heisenberg,et al. Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.
[111] R. Elofsson,et al. CENTRAL NERVOUS SYSTEM OF HUTCHINSONIELLA MACRACANTHA (CEPHALOCARIDA) , 1990 .
[112] J. Bond,et al. Current status of the Myriapod class diplopoda (millipedes): taxonomic diversity and phylogeny. , 2007, Annual review of entomology.
[113] G. Boyan,et al. Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts , 2005 .
[114] Peter Görner,et al. Die optische und kinästhetische Orientierung der Trichterspinne Agelena Labyrinthica (Cl.) , 1958, Zeitschrift für vergleichende Physiologie.
[115] S. Harzsch,et al. Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish , 2007, Cell and Tissue Research.
[116] J. Bacon,et al. Comparative anatomy of serotonin‐like immunoreactive neurons in isopods: Putative homologues in several species , 1994, The Journal of comparative neurology.
[117] U. Homberg,et al. Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects , 1991, Cell and Tissue Research.