Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants.

Shewanella is frequently used as a model microorganism for microbial bioelectrochemical systems. In this study, we used cyclic voltammetry (CV) to investigate extracellular electron transfer mechanisms from S. oneidensis MR-1 (WT) and five deletion mutants: membrane bound cytochrome (∆mtrC/ΔomcA), transmembrane pili (ΔpilM-Q, ΔmshH-Q, and ΔpilM-Q/ΔmshH-Q) and flagella (∆flg). We demonstrate that the formal potentials of mediated and direct electron transfer sites of the derived biofilms can be gained from CVs of the respective biofilms recorded at bioelectrocatlytic (i.e. turnover) and lactate depleted (i.e. non-turnover) conditions. As the biofilms possess only a limited bioelectrocatalytic activity, an advanced data processing procedure, using the open-source software SOAS, was applied. The obtained results indicate that S. oneidensis mutants used in this study are able to bypass hindered direct electron transfer by alternative redox proteins as well as self-mediated pathways.

[1]  K. Rosso,et al.  Mechanisms of electron transfer in two decaheme cytochromes from a metal-reducing bacterium. , 2007, The journal of physical chemistry. B.

[2]  D. Frishman,et al.  Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. , 2004, Omics : a journal of integrative biology.

[3]  Shweta Srikanth,et al.  Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes , 2008, Biotechnology and bioengineering.

[4]  Anna Obraztsova,et al.  Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants , 2007, Applied and Environmental Microbiology.

[5]  Uwe Schröder,et al.  On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells , 2008 .

[6]  Kenneth H. Nealson,et al.  Ecophysiology of the Genus Shewanella , 2006 .

[7]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[8]  A. Spormann,et al.  Initial Phases of Biofilm Formation in Shewanella oneidensis MR-1 , 2004, Journal of bacteriology.

[9]  Christophe Léger,et al.  SOAS: a free program to analyze electrochemical data and other one-dimensional signals. , 2009, Bioelectrochemistry.

[10]  A. Bard,et al.  Electrochemical Dictionary , 2012 .

[11]  Janos Vörös,et al.  Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system , 2008 .

[12]  Grigoriy E. Pinchuk,et al.  Towards environmental systems biology of Shewanella , 2008, Nature Reviews Microbiology.

[13]  Thomas Joos,et al.  New frontiers in microarray technology development. , 2008, Current opinion in biotechnology.

[14]  Abraham Esteve-Núñez,et al.  C-type cytochromes wire electricity-producing bacteria to electrodes. , 2008, Angewandte Chemie.

[15]  D. Lovley The microbe electric: conversion of organic matter to electricity. , 2008, Current opinion in biotechnology.

[16]  Liang Shi,et al.  High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. , 2006, Journal of the American Chemical Society.

[17]  Jian Sun,et al.  Voltammetry and Growth Physiology of Geobacter sulfurreducens Biofilms as a Function of Growth Stage and Imposed Electrode Potential , 2010 .

[18]  Byung Hong Kim,et al.  Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens , 1999 .

[19]  Justin C. Biffinger,et al.  Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis , 2009, Biotechnology and bioengineering.

[20]  B. Logan Exoelectrogenic bacteria that power microbial fuel cells , 2009, Nature Reviews Microbiology.

[21]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[22]  J. Lloyd,et al.  The effect of flavin electron shuttles in microbial fuel cells current production , 2010, Applied Microbiology and Biotechnology.

[23]  S. Elliott,et al.  Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window , 2008, JBIC Journal of Biological Inorganic Chemistry.

[24]  L. Nielsen,et al.  Electric currents couple spatially separated biogeochemical processes in marine sediment , 2010, Nature.

[25]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[26]  Gordon A Anderson,et al.  Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. J. Colberg,et al.  Electrochemical Interaction of Shewanella Oneidensis Mr-1 and Its Outer Membrane Cytochromes Omca and MTRC with Hematite Electrodes , 2009 .

[28]  F. Armstrong,et al.  Investigating and exploiting the electrocatalytic properties of hydrogenases. , 2007, Chemical reviews.

[29]  E. Labelle,et al.  Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1* , 2009, The Journal of Biological Chemistry.

[30]  Glenn R. Johnson,et al.  The influence of acidity on microbial fuel cells containing Shewanella oneidensis. , 2008, Biosensors & bioelectronics.

[31]  Eun Jeong Cho,et al.  Optimization of the biological component of a bioelectrochemical cell. , 2007, Bioelectrochemistry.

[32]  U. Schröder Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. , 2007, Physical chemistry chemical physics : PCCP.

[33]  W. Verstraete,et al.  Microbial phenazine production enhances electron transfer in biofuel cells. , 2005, Environmental science & technology.

[34]  Jing-Yuan Wang,et al.  Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation. , 2010, Biosensors & bioelectronics.

[35]  Willy Verstraete,et al.  Microbial ecology meets electrochemistry: electricity-driven and driving communities , 2007, The ISME Journal.

[36]  Shi Liang,et al.  導電性ナノワイヤーをShewanella oneidensis菌MR‐1菌株その他の微生物が生成する , 2006 .

[37]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[38]  In Seop Chang,et al.  Electrochemically Active Bacteria (EAB) and Mediator-Less Microbial Fuel Cells , 2006 .

[39]  Justin C. Biffinger,et al.  High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. , 2006, Environmental science & technology.

[40]  Byung Hong Kim,et al.  Correction for Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other micro-organisms , 2009 .

[41]  O. White,et al.  Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis , 2002, Nature Biotechnology.

[42]  Wesley C. Sanders,et al.  The utility of Shewanella japonica for microbial fuel cells. , 2011, Bioresource technology.

[43]  Ronald M. Atlas,et al.  Handbook of microbiological media , 1993 .

[44]  Jurg Keller,et al.  Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application , 2009 .

[45]  D. Richardson,et al.  Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors , 2007, JBIC Journal of Biological Inorganic Chemistry.

[46]  Jing-Yuan Wang,et al.  Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. , 2010, Biosensors & bioelectronics.

[47]  Gary J. Vora,et al.  The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer , 2010 .

[48]  K. H. Nealson,et al.  Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors , 2005, Journal of bacteriology.

[49]  Largus T Angenent,et al.  Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production , 2010, Biotechnology and bioengineering.

[50]  Bruce E Rittmann,et al.  Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria , 2008, Biotechnology and bioengineering.