Conformal Regression for QSAR Modelling – Quantifying Prediction Uncertainty

[1]  Stanley E Lazic,et al.  Predicting drug safety and communicating risk: benefits of a Bayesian approach , 2017, bioRxiv.

[2]  K. Roy,et al.  How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models , 2017 .

[3]  Scott Boyer,et al.  Binary classification of imbalanced datasets using conformal prediction. , 2017, Journal of molecular graphics & modelling.

[4]  Andreas Bender,et al.  Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction , 2017, J. Chem. Inf. Model..

[5]  Andreas Bender,et al.  Modelling compound cytotoxicity using conformal prediction and PubChem HTS data. , 2017, Toxicology research.

[6]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[7]  Alex Alves Freitas,et al.  A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood , 2016, Journal of Cheminformatics.

[8]  C Barber,et al.  Applicability domain: towards a more formal definition$ , 2016, SAR and QSAR in environmental research.

[9]  Isidro Cortes-Ciriano,et al.  Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR , 2016, J. Chem. Inf. Model..

[10]  Scott Boyer,et al.  Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays. , 2016, Chemical research in toxicology.

[11]  U Norinder,et al.  Conformal prediction to define applicability domain – A case study on predicting ER and AR binding , 2016, SAR and QSAR in environmental research.

[12]  K. Roy,et al.  Be aware of error measures. Further studies on validation of predictive QSAR models , 2016 .

[13]  Isidro Cortes-Ciriano,et al.  Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel , 2015, Bioinform..

[14]  Andreas Bender,et al.  How Consistent are Publicly Reported Cytotoxicity Data? Large‐Scale Statistical Analysis of the Concordance of Public Independent Cytotoxicity Measurements , 2016, ChemMedChem.

[15]  J. Dearden The History and Development of Quantitative Structure-Activity Relationships (QSARs) , 2016 .

[16]  Isidro Cortes-Ciriano,et al.  Improved Chemical Structure-Activity Modeling Through Data Augmentation , 2015, J. Chem. Inf. Model..

[17]  Henrik Boström,et al.  Bias reduction through conditional conformal prediction , 2015, Intell. Data Anal..

[18]  Isidro Cortes-Ciriano,et al.  Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets , 2015, J. Chem. Inf. Model..

[19]  A. Bender,et al.  Prediction of PARP Inhibition with Proteochemometric Modelling and Conformal Prediction , 2015, Molecular informatics.

[20]  Lars Carlsson,et al.  Handling Small Calibration Sets in Mondrian Inductive Conformal Regressors , 2015, SLDS.

[21]  Scott Boyer,et al.  Introducing conformal prediction in predictive modeling for regulatory purposes. A transparent and flexible alternative to applicability domain determination. , 2015, Regulatory toxicology and pharmacology : RTP.

[22]  Igor V. Tetko,et al.  Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process , 2014, Journal of Cheminformatics.

[23]  Henrik Boström,et al.  Regression conformal prediction with random forests , 2014, Machine Learning.

[24]  Henrik Boström,et al.  Efficiency Comparison of Unstable Transductive and Inductive Conformal Classifiers , 2014, AIAI Workshops.

[25]  Isidro Cortes-Ciriano,et al.  Proteochemometric modeling in a Bayesian framework , 2014, Journal of Cheminformatics.

[26]  Scott Boyer,et al.  Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination , 2014, J. Chem. Inf. Model..

[27]  S. Muresan,et al.  Chemical predictive modelling to improve compound quality , 2013, Nature Reviews Drug Discovery.

[28]  Scott Boyer,et al.  The application of conformal prediction to the drug discovery process , 2013, Annals of Mathematics and Artificial Intelligence.

[29]  Paul Czodrowski,et al.  hERG Me Out , 2013, J. Chem. Inf. Model..

[30]  Igor V. Tetko,et al.  Development of Dimethyl Sulfoxide Solubility Models Using 163 000 Molecules: Using a Domain Applicability Metric to Select More Reliable Predictions , 2013, J. Chem. Inf. Model..

[31]  Lars Carlsson,et al.  Beyond the Scope of Free-Wilson Analysis: Building Interpretable QSAR Models with Machine Learning Algorithms , 2013, J. Chem. Inf. Model..

[32]  A. Vulpetti,et al.  Comparability of Mixed IC50 Data – A Statistical Analysis , 2013, PloS one.

[33]  Lars Carlsson,et al.  QSAR with experimental and predictive distributions: an information theoretic approach for assessing model quality , 2013, Journal of Computer-Aided Molecular Design.

[34]  Vladimir Vovk,et al.  Conditional validity of inductive conformal predictors , 2012, Machine Learning.

[35]  Scott Boyer,et al.  Application of Conformal Prediction in QSAR , 2012, AIAI.

[36]  A. Vulpetti,et al.  The experimental uncertainty of heterogeneous public K(i) data. , 2012, Journal of medicinal chemistry.

[37]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[38]  Harris Papadopoulos,et al.  Regression Conformal Prediction with Nearest Neighbours , 2014, J. Artif. Intell. Res..

[39]  Haris Haralambous,et al.  Reliable prediction intervals with regression neural networks , 2011, Neural Networks.

[40]  Igor V. Tetko,et al.  Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information , 2011, J. Comput. Aided Mol. Des..

[41]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[42]  Igor V. Tetko,et al.  Applicability Domains for Classification Problems: Benchmarking of Distance to Models for Ames Mutagenicity Set , 2010, J. Chem. Inf. Model..

[43]  Alexander Tropsha,et al.  Best Practices for QSAR Model Development, Validation, and Exploitation , 2010, Molecular informatics.

[44]  J. Huuskonen,et al.  Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. , 2010 .

[45]  Gilles Marcou,et al.  Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models , 2009, J. Chem. Inf. Model..

[46]  Igor Kononenko,et al.  Comparison of approaches for estimating reliability of individual regression predictions , 2008, Data Knowl. Eng..

[47]  Igor V. Tetko,et al.  Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis: Focusing on Applicability Domain and Overfitting by Variable Selection , 2008, J. Chem. Inf. Model..

[48]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[49]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[50]  W. Gasarch,et al.  The Book Review Column 1 Coverage Untyped Systems Simple Types Recursive Types Higher-order Systems General Impression 3 Organization, and Contents of the Book , 2022 .

[51]  Thomas Lengauer,et al.  Ensemble Methods for Classification in Cheminformatics , 2004, J. Chem. Inf. Model..

[52]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[53]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.