Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure

The Thousands of Problems for Theorem Provers (TPTP) problem library is the basis of a well known and well established infrastructure that supports research, development, and deployment of Automated Theorem Proving (ATP) systems. The extension of the TPTP from first-order form (FOF) logic to typed higher-order form (THF) logic has provided a basis for new development and application of ATP systems for higher-order logic. Key developments have been the specification of the THF language, the addition of higher-order problems to the TPTP, the development of the TPTP THF infrastructure, several ATP systems for higher-order logic, and the use of higher-order ATP in a range of domains. This paper describes these developments.

[1]  D. Barton,et al.  Grundlagen der Analysis , 1934 .

[2]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[3]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[4]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[5]  Karsten Konrad,et al.  Model Generation for Natural Language Interpretation and Analysis , 2004, Lecture Notes in Computer Science.

[6]  Freek Wiedijk,et al.  The Seventeen Provers of the World , 2006 .

[7]  Geoff Sutcliffe,et al.  An Interactive Derivation Viewer , 2007, UITP@FLoC.

[8]  J. Girard,et al.  Proofs and types , 1989 .

[9]  J. Siekmann,et al.  Computer supported mathematics with MEGA , 2005 .

[10]  Chad E. Brown Solving for Set Variables in Higher-Order Theorem Proving , 2002, CADE.

[11]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[12]  Deepak Garg Principal-Centric Reasoning in Constructive Authorization Logic , 2009 .

[13]  Piotr Rudnicki,et al.  An Overview of the MIZAR Project , 1992 .

[14]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[15]  Christoph Kreitz,et al.  The ILTP Problem Library for Intuitionistic Logic , 2007, Journal of Automated Reasoning.

[16]  Yi Gao,et al.  Automated Generation of Interesting Theorems , 2006, FLAIRS.

[17]  Jörg H. Siekmann,et al.  Computer supported mathematics with Omegamega , 2006, J. Appl. Log..

[18]  C. E. Brown Automated Reasoning in Higher-Order Logic: Set Comprehension and Extensionality in Church's Type Theory , 2007 .

[19]  Bernhard Schölkopf,et al.  A Tutorial Introduction , 2001 .

[20]  T. Hales The Kepler conjecture , 1998, math/9811078.

[21]  Panagiotis Manolios,et al.  Computer-Aided Reasoning: An Approach , 2011 .

[22]  Geoff Sutcliffe,et al.  The state of CASC , 2006, AI Commun..

[23]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[24]  Michael Kohlhase,et al.  OMDoc - An Open Markup Format for Mathematical Documents [version 1.2] , 2006, Lecture Notes in Computer Science.

[25]  Xavier Leroy,et al.  Formal verification of a realistic compiler , 2009, CACM.

[26]  John Harrison,et al.  Floating-Point Verification Using Theorem Proving , 2006, SFM.

[27]  Bishop Brock,et al.  ACL2 Theorems About Commercial Microprocessors , 1996, FMCAD.

[28]  Christoph Benzmüller,et al.  Simple Type Theory as Framework for Combining Logics , 2010, ArXiv.

[29]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[30]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[31]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[32]  Zinaida Trybulec,et al.  Boolean Properties of Sets , 1990 .

[33]  Hans Hahn,et al.  Grundlagen der Analysis , 1911 .

[34]  Geoff Sutcliffe,et al.  THF0 - The Core of the TPTP Language for Higher-Order Logic , 2008, IJCAR.

[35]  Koen Claessen,et al.  Using the TPTP Language for Writing Derivations and Finite Interpretations , 2006, IJCAR.

[36]  Peter B. Andrews On connections and higher-order logic , 2004, Journal of Automated Reasoning.

[37]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[38]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[39]  G. Frege Grundgesetze der Arithmetik , 1893 .

[40]  Christoph Benzmüller,et al.  A Structured Set of Higher-Order Problems , 2005, TPHOLs.

[41]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[42]  Volker Sorge,et al.  Combined reasoning by automated cooperation , 2008, J. Appl. Log..

[43]  Michael Kohlhase,et al.  MathDox : mathematical documents on the web , 2006 .

[44]  M. E. Kabay,et al.  Foundations of Computer Security , 2012 .

[45]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[46]  Andrea Asperti,et al.  User Interaction with the Matita Proof Assistant , 2007, Journal of Automated Reasoning.

[47]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[48]  Frank Pfenning,et al.  TPS: A theorem-proving system for classical type theory , 1996, Journal of Automated Reasoning.

[49]  Geoff Sutcliffe,et al.  Extending the TPTP Language to Higher-Order Logic with Automated Parser Generation , 2006, IJCAR.

[50]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[51]  Chad E. Brown Combining Type Theory and Untyped Set Theory , 2006, IJCAR.

[52]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[53]  J. van Leeuwen,et al.  Theorem Proving in Higher Order Logics , 1999, Lecture Notes in Computer Science.

[54]  J. Hurd First-Order Proof Tactics in Higher-Order Logic Theorem Provers In Proc , 2003 .

[55]  Robert Nieuwenhuis The impact of CASC in the development of automated deduction systems , 2002, AI Commun..

[56]  Michael Beeson,et al.  OTTER-LAMBDA, A THEOREM-PROVER WITH UNTYPED LAMBDA-UNIFICATION , 2004 .

[57]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[58]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[59]  Hans de Nivelle,et al.  Automated Proof Construction in Type Theory Using Resolution , 2000, Journal of Automated Reasoning.

[60]  Michael J. C. Gordon,et al.  Set Theory, Higher Order Logic or Both? , 1996, TPHOLs.

[61]  Martín Abadi,et al.  A Modal Deconstruction of Access Control Logics , 2008, FoSSaCS.

[62]  F. Pfenning Logic programming in the LF logical framework , 1991 .

[63]  John Harrison,et al.  HOL Light: An Overview , 2009, TPHOLs.

[64]  Matthew Bishop,et al.  A Breadth-First Strategy for Mating Search , 1999, CADE.

[65]  Geoff Sutcliffe The SZS Ontologies for Automated Reasoning Software , 2008, LPAR Workshops.

[66]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[67]  Andrea Asperti,et al.  Higher order Proof Reconstruction from Paramodulation-Based Refutations: The Unit Equality Case , 2007, Calculemus/MKM.

[68]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[69]  Sunil Issar Path-Focused Duplication: A Search Procedure for General Matings , 1990, AAAI.

[70]  Geoff Sutcliffe,et al.  Semantic Derivation Verification , 2005, FLAIRS Conference.

[71]  Chad E. Brown,et al.  Analytic Tableaux for Higher-Order Logic with Choice , 2010, Journal of Automated Reasoning.

[72]  Peter B. Andrews,et al.  TPS: A hybrid automatic-interactive system for developing proofs , 2006, J. Appl. Log..

[73]  Peter B. Andrews,et al.  Selectively Instantiating Definitions , 1998, CADE.

[74]  R. Pollack The Theory of LEGO A Proof Checker for the Extended Calculus of Constructions , 1994 .

[75]  Christoph Benzmüller Automating Access Control Logics in Simple Type Theory with LEO-II (Techreport) , 2009, SEC.

[76]  Michael J. Witbrock,et al.  An Introduction to the Syntax and Content of Cyc , 2006, AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering.

[77]  Christoph Benzmüller,et al.  System Description: LEO - A Higher-Order Theorem Prover , 1998, CADE.

[78]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[79]  Geoff Sutcliffe,et al.  Progress in the Development of Automated Theorem Proving for Higher-Order Logic , 2009, CADE.

[80]  Chad Edward Brown,et al.  Dependently Typed Set Theory , 2006 .

[81]  Lawrence C. Paulson,et al.  Multimodal and intuitionistic logics in simple type theory , 2010, Log. J. IGPL.

[82]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[83]  M. Bickford,et al.  Formal Foundations of Computer Security , 2008 .

[84]  Konstantin Korovin,et al.  iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description) , 2008, IJCAR.

[85]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[86]  Gert Smolka,et al.  Terminating Tableaux for the Basic Fragment of Simple Type Theory , 2009, TABLEAUX.

[87]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[88]  Mark Bickford,et al.  Innovations in computational type theory using Nuprl , 2006, J. Appl. Log..

[89]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[90]  Christoph Benzmüller,et al.  Extensional Higher-Order Paramodulation and RUE-Resolution , 1999, CADE.

[91]  Gert Smolka,et al.  Extended First-Order Logic , 2009, TPHOLs.

[92]  Andreas Wolf,et al.  Integrating Logical Functions with ILF , 1994 .

[93]  Patrice Godefroid,et al.  Software Model Checking: The VeriSoft Approach , 2005, Formal Methods Syst. Des..

[94]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[95]  T. Pietrzykowski,et al.  A complete mechanization of (ω) -order type theory , 1972, ACM Annual Conference.

[96]  Freek Wiedijk,et al.  The Seventeen Provers of the World, Foreword by Dana S. Scott , 2006, The Seventeen Provers of the World.

[97]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..