Calibrating the coevolution of Ediacaran life and environment

Significance Our understanding of the interactions between animal evolution, biogeochemical cycling, and global tectonics during the Ediacaran Period (635 to 541 Ma) is severely hampered by lack of a robust temporal framework. The appearance and extinction of the earliest fossil animals are hypothesized to correlate with upheavals in biogeochemical cycles—foremost the Shuram carbon isotope excursion, possibly the largest known disturbance to the global carbon cycle. However, without age constraints on the excursion’s timing and duration, its driving mechanisms, global synchroneity, and role in Ediacaran geobiological evolution cannot be evaluated. We provide radioisotopic ages for the onset and termination of the Shuram, evaluate its global synchroneity, and show that it is divorced from the rise of the earliest preserved animal ecosystems. The rise of animals occurred during an interval of Earth history that witnessed dynamic marine redox conditions, potentially rapid plate motions, and uniquely large perturbations to global biogeochemical cycles. The largest of these perturbations, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for Ediacaran environmental change, possibly linked with evolutionary innovation or extinction. However, there are a number of controversies surrounding the Shuram, including its timing, duration, and role in the concomitant biological and biogeochemical upheavals. Here we present radioisotopic dates bracketing the Shuram on two separate paleocontinents; our results are consistent with a global and synchronous event between 574.0 ± 4.7 and 567.3 ± 3.0 Ma. These dates support the interpretation that the Shuram is a primary and synchronous event postdating the Gaskiers glaciation. In addition, our Re-Os ages suggest that the appearance of Ediacaran macrofossils in northwestern Canada is identical, within uncertainty, to similar macrofossils from the Conception Group of Newfoundland, highlighting the coeval appearance of macroscopic metazoans across two paleocontinents. Our temporal framework for the terminal Proterozoic is a critical step for testing hypotheses related to extreme carbon isotope excursions and their role in the evolution of complex life.

[1]  D. McIlroy,et al.  A Chronostratigraphic Framework for the Rise of the Ediacaran Macrobiota: New Constraints from Mistaken Point Ecological Reserve, Newfoundland , 2020, GSA Bulletin.

[2]  A. Knoll,et al.  Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle , 2020, American Journal of Science.

[3]  A. Maloof,et al.  A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen , 2019, Proceedings of the National Academy of Sciences.

[4]  J. Strauss,et al.  Upper Windermere Supergroup and the transition from rifting to continent-margin sedimentation, Nadaleen River area, northern Canadian Cordillera , 2019, GSA Bulletin.

[5]  A. Anbar,et al.  Global marine redox changes drove the rise and fall of the Ediacara biota , 2019, Geobiology.

[6]  J. Tarduno,et al.  Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity , 2019, Nature Geoscience.

[7]  E. Sperling,et al.  Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution , 2018, Proceedings of the Royal Society B.

[8]  I. Gómez-Pérez,et al.  The Precambrian succession of Oman from Platform to Basin: Predicting reservoir and source rock distribution , 2018, Seventh Arabian Plate Geology Workshop: Pre-Cambrian to Paleozoic Petroleum Systems in the Arabian Plate.

[9]  D. Erwin,et al.  Ediacaran Extinction and Cambrian Explosion. , 2018, Trends in ecology & evolution.

[10]  C. Bjerrum,et al.  Quantifying early marine diagenesis in shallow-water carbonate sediments , 2018, Geochimica et Cosmochimica Acta.

[11]  J. Grotzinger,et al.  A 600-Million-Year Carbonate Clumped-Isotope Record from the Sultanate of Oman , 2018, Journal of Sedimentary Research.

[12]  T. Lyons,et al.  Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. , 2018, Emerging topics in life sciences.

[13]  J. Schiffbauer,et al.  Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life , 2018 .

[14]  C. Holmden,et al.  Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments , 2018 .

[15]  E. Tziperman,et al.  Snowball Earth climate dynamics and Cryogenian geology-geobiology , 2017, Science Advances.

[16]  M. Droser,et al.  The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran , 2017 .

[17]  J. Grotzinger,et al.  Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran–Cambrian boundary, Sultanate of Oman , 2017, Geobiology.

[18]  D. Grazhdankin,et al.  Towards an ediacaran time scale: Problems, protocols, and prospects , 2016 .

[19]  F. Macdonald,et al.  Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota , 2016 .

[20]  N. Planavsky,et al.  Oceanic oxygenation events in the anoxic Ediacaran ocean , 2016, Geobiology.

[21]  M. Laflamme,et al.  Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils , 2016, Paleobiology.

[22]  F. Macdonald,et al.  Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada , 2016 .

[23]  J. Grotzinger,et al.  Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion , 2015 .

[24]  J. Grotzinger,et al.  Marine organic matter cycling during the Ediacaran Shuram excursion , 2015 .

[25]  D. Erwin,et al.  Biotic replacement and mass extinction of the Ediacara biota , 2015, Proceedings of the Royal Society B: Biological Sciences.

[26]  K. Kodama,et al.  Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA , 2015 .

[27]  A. Liu,et al.  Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota , 2015 .

[28]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[29]  A. Anbar,et al.  Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period , 2015 .

[30]  F. Macdonald,et al.  New Ediacaran fossils from the uppermost Blueflower Formation, northwest Canada: disentangling biostratigraphy and paleoecology , 2015, Journal of Paleontology.

[31]  M. Hamilton,et al.  A paleomagnetic and U–Pb geochronology study of the western end of the Grenville dyke swarm: Rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? , 2015 .

[32]  T. Ford,et al.  U-Pb geochronology and global context of the Charnian Supergroup, UK: constraints on the age of key Ediacaran fossil assemblages , 2015 .

[33]  P. Swart,et al.  Interpreting carbonate and organic carbon isotope covariance in the sedimentary record , 2014, Nature Communications.

[34]  A. Knoll,et al.  740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy , 2014 .

[35]  J. Grotzinger,et al.  Facies, stratigraphy, and evolution of a middle Ediacaran carbonate ramp: Khufai Formation, Sultanate of Oman , 2014 .

[36]  G. Narbonne,et al.  When Life Got Smart: The Evolution of Behavioral Complexity Through the Ediacaran and Early Cambrian of NW Canada , 2014 .

[37]  R. Dalrymple,et al.  Deep-Water Ediacaran Fossils from Northwestern Canada: Taphonomy, Ecology, and Evolution , 2014 .

[38]  D. Schrag,et al.  The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada , 2013 .

[39]  S. Poulton,et al.  Anoxia in the terrestrial environment during the late Mesoproterozoic , 2013 .

[40]  M. Droser,et al.  How well do fossil assemblages of the Ediacara Biota tell time , 2013 .

[41]  D. Schrag,et al.  Authigenic Carbonate and the History of the Global Carbon Cycle , 2013, Science.

[42]  K. Bergmann Constraints on the Carbon Cycle and Climate During the Early Evolution of Animals , 2013 .

[43]  P. N. Taylor,et al.  Geochemical evidence for an Early Cambrian origin of the ‘Q’ oils and some condensates from north Oman , 2012 .

[44]  C. Nicholas,et al.  Ediacaran–Cambrian Sirab Formation of the Al Huqf region, Sultanate of Oman , 2012, GeoArabia.

[45]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[46]  J. Grotzinger,et al.  Enigmatic origin of the largest-known carbon isotope excursion in Earth's history , 2011 .

[47]  D. Chew,et al.  Re–Os geochronology of the Neoproterozoic–Cambrian Dalradian Supergroup of Scotland and Ireland : implications for Neoproterozoic stratigraphy, glaciations and Re–Os systematics. , 2011 .

[48]  L. Derry A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly , 2010 .

[49]  E. Guerroué Duration and synchroneity of the largest negative carbon isotope excursion on Earth: The Shuram/Wonoka anomaly , 2010 .

[50]  Daniel J. Condon,et al.  Fossil steroids record the appearance of Demospongiae during the Cryogenian period , 2009, Nature.

[51]  J. Craig,et al.  Global Neoproterozoic petroleum systems: the emerging potential in North Africa , 2009 .

[52]  B. Kendall,et al.  187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks , 2009 .

[53]  S. Xiao,et al.  On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. , 2009, Trends in ecology & evolution.

[54]  R. Summons,et al.  Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin , 2009 .

[55]  A. J. Kaufman,et al.  Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation , 2008, Proceedings of the National Academy of Sciences.

[56]  P. Allen,et al.  Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman , 2007, American Journal of Science.

[57]  P. Allen The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation , 2007 .

[58]  P. Allen,et al.  A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman , 2007, Journal of the Geological Society.

[59]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[60]  P. Allen,et al.  Parasequence development in the Ediacaran Shuram Formation (Nafun Group, Oman): high‐resolution stratigraphic test for primary origin of negative carbon isotopic ratios , 2006 .

[61]  P. Allen,et al.  Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman) , 2006 .

[62]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[63]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[64]  P. Allen,et al.  Evolution of a terminal Neoproterozoic carbonate ramp system (Buah Formation, Sultanate of Oman): Effects of basement paleotopography , 2004 .

[65]  B. Kendall,et al.  Constraints on the timing of Marinoan “Snowball Earth” glaciation by 187Re–187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada , 2004 .

[66]  P. Allen,et al.  Understanding carbonate ramp dynamics using δ13C profiles: examples from the Neoproterozoic Buah Formation of Oman , 2004 .

[67]  R. Creaser,et al.  Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods , 2003 .

[68]  J. Grotzinger,et al.  Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman , 2003 .

[69]  P. Allen,et al.  Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman , 2002 .

[70]  T. K. Kyser,et al.  Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown , 2001 .

[71]  M. Cecile Geology of the northeastern Niddery Lake map area, east-central Yukon and adjacent Northwest Territories , 2000 .

[72]  M. McCarron The sedimentology and chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman , 1999 .

[73]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Mustard,et al.  Rift-related volcanism, sedimentation, and tectonic setting of the Mount Harper Group, Ogilvie Mountains, Yukon Territory , 1997 .

[75]  A. Cohen,et al.  Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry , 1996 .

[76]  J. Morgan,et al.  Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.

[77]  J. D. Aitken,et al.  Neoproterozoic of the Mackenzie Mountains, northwestern Canada , 1995 .

[78]  A. J. Kaufman,et al.  Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. , 1994, Geological Society of America bulletin.

[79]  S. Burns,et al.  Carbon isotopic record of the Latest Proterozoic from Oman , 1993 .

[80]  J. D. Aitken Two Late Proterozoic glaciations, Mackenzie Mountains, northwestern Canada , 1991 .

[81]  T. Walczyk,et al.  Osmium isotope ratio determinations by negative thermal ionization mass spectrometry , 1991 .

[82]  G. Wasserburg,et al.  Negative thermal ion mass spectrometry of osmium, rhenium, and iridium , 1991 .

[83]  J. D. Aitken Uppermost Proterozoic formations in central Mackenzie Mountains, Northwest Territories , 1989 .

[84]  R. Thompson,et al.  Trace fossils and stratigraphy of the Precambrian-Cambrian boundary sequence, upper Harper group, Ogilvie Mountains, Yukon , 1988 .

[85]  D. Rabu Geologie de l'autochtone des montagnes d'oman : la fenetre du jabal akhdar : la semelle metamorphique de la nappe ophiolitique de samail dans les parties orientale et centrale des montagnes d'oman : une revue , 1987 .

[86]  H. Gabrielse,et al.  Geology of Flat River, Glacier Lake, and Wrigley Lake map-areas, district of Mackenzie and Yukon territory , 1972 .