Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis

The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM) model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID) control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA) for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.

[1]  Christopher M. Bishop,et al.  Variational Relevance Vector Machines , 2000, UAI.

[2]  Dennis S. Bernstein,et al.  Piecewise Linear Identification for the Rate-Independent and Rate-Dependent Duhem Hysteresis Models , 2007, IEEE Transactions on Automatic Control.

[3]  Yanhua Ma,et al.  Application of a fuzzy tree based dynamic hysteresis model to precise tracking control for a smart structure , 2009, 2009 7th Asian Control Conference.

[4]  Chengbao Jiang,et al.  Effect of compressive stress on magnetostriction hysteresis of 〈1 1 0〉 oriented Tb0.29Dy0.48Ho0.23Fe2 crystal , 2009 .

[5]  J. Suykens,et al.  Recurrent least squares support vector machines , 2000 .

[6]  Yonghong Tan,et al.  Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators , 2010 .

[7]  Ralph C. Smith,et al.  Nonlinear Optimal Control Techniques for Vibration Attenuation Using Magnetostrictive Actuators , 2008 .

[8]  Gregory D. Buckner,et al.  Modeling piezoelectric actuators with Hysteretic Recurrent Neural Networks , 2010 .

[9]  Bijan Shirinzadeh,et al.  Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[11]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[12]  JianQin Mao,et al.  Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis , 2009, Science in China Series F: Information Sciences.

[13]  U-Xuan Tan,et al.  Rate-Dependent Hysteresis Model of Piezoelectric using Singularity Free Prandtl-Ishlinskii Model , 2007, 2007 International Symposium on Computational Intelligence in Robotics and Automation.

[14]  Xinkai Chen,et al.  Pseudo-inverse-based adaptive control for uncertain discrete time systems preceded by hysteresis , 2009, Autom..

[15]  Ying Feng,et al.  Robust control for shape memory alloy micro-actuators based flap positioning system , 2010, Proceedings of the 2010 American Control Conference.

[16]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[17]  Ralph C. Smith Inverse compensation for hysteresis in magnetostrictive transducers , 2001 .

[18]  JinHyoung Oh,et al.  Identification of rate-dependent hysteresis using the semilinear Duhem model , 2004, Proceedings of the 2004 American Control Conference.

[19]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[20]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[21]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[22]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.