Alfvén wave cascades in a tokamak

Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfven perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfven eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfven cascades and the evolution of the Alfven continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfven continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfven spectroscopy for studying q(r). Modeling shows that the Alfven cascade occurs when the Alfven continuum frequency has a maximum at the zero shear point. Interpretation of the Alfven cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping.

[1]  T. H. Stix,et al.  The Theory Of Plasma Waves , 1962 .

[2]  T. Stringer,et al.  Radial profile of alpha -particle heating in a Tokamak , 1974 .

[3]  M. N. Rosenbluth,et al.  Excitation of Alfven waves by high-energy ions in a tokamak , 1975 .

[4]  J. P. Goedbloed Spectrum of ideal magnetohydrodynamics of axisymmetric toroidal systems , 1975 .

[5]  A. Hasegawa,et al.  Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave , 1976 .

[6]  R. Gruber,et al.  Excitation of global eigenmodes of the Alfven wave in Tokamaks , 1982 .

[7]  G. L. Chen,et al.  Kinetic description of Alfven wave heating , 1982 .

[8]  M. S. Chance,et al.  High- n ideal and resistive shear Alfvén waves in tokamaks , 1985 .

[9]  K. Appert,et al.  Theory of plasma heating by low frequency waves: Magnetic pumping and Alfvén resonance heating , 1991 .

[10]  E. J. Strait,et al.  An investigation of beam driven Alfvén instabilities in the DIII-D tokamak , 1991 .

[11]  Paul,et al.  Excitation of toroidal Alfvén eigenmodes in TFTR. , 1991, Physical review letters.

[12]  Lindberg,et al.  Continuum damping of high-mode-number toroidal Alfvén waves. , 1991, Physical review letters.

[13]  S. Mahajan,et al.  Kinetic theory of toroidicity-induced alfvén eigenmodes , 1992 .

[14]  Chen,et al.  Resonant damping of toroidicity-induced shear-Alfvén eigenmodes in tokamaks. , 1992, Physical review letters.

[15]  H. Berk,et al.  Continuum damping of low‐n toroidicity‐induced shear Alfvén eigenmodes , 1992 .

[16]  Liu Chen,et al.  THEORY OF KINETIC BALLOONING MODES EXCITED BY ENERGETIC PARTICLES IN TOKAMAKS , 1993 .

[17]  Stefaan Poedts,et al.  Computation of the Ideal-MHD Continuous Spectrum in Axisymmetric Plasmas , 1993 .

[18]  H. Berk,et al.  Arbitrary mode number boundary‐layer theory for nonideal toroidal Alfvén modes , 1993 .

[19]  G. Hammett,et al.  Expansion of parameter space for toroidal Alfven eigenmode experiments in TFTR , 1994 .

[20]  M. Rosenbluth,et al.  Nonideal theory of toroidal Alfvén eigenmodes , 1994 .

[21]  Liu Chen,et al.  Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks , 1994 .

[22]  S. Sharapov,et al.  Energetic particle drive for toroidicity-induced Alfven eigenmodes and kinetic toroidicity-induced Alfven eigenmodes in a low-shear tokamak , 1995 .

[23]  D. N. Borba,et al.  Modeling the excitation of global Alfvén modes by an external antenna in the Joint European Torus (JET) , 1995 .

[24]  Chio Cheng,et al.  Fast particle destabilization of toroidal Alfven eigenmodes , 1995 .

[25]  T. Ozeki,et al.  Excitation of high n toroidicity-induced Alfvén eigenmodes and associated plasma dynamical behaviour in the JT-60U ICRF experiments , 1995 .

[26]  Fulvio Zonca,et al.  Theory of toroidal Alfvén modes excited by energetic particles in tokamaks , 1996 .

[27]  F. X. Söldner,et al.  Shear optimization experiments with current profile control on JET , 1997 .

[28]  E. D. Fredrickson,et al.  ALPHA-PARTICLE-DRIVEN TOROIDAL ALFVEN EIGENMODES IN THE TOKAMAK FUSION TEST REACTOR , 1997 .

[29]  J. Lister,et al.  Alfven eigenmode experiments in tokamaks and stellarators , 1997 .

[30]  S. Sharapov,et al.  Nonlinear splitting of fast particle driven waves in a plasma: observation and theory , 1998 .

[31]  Herbert L Berk,et al.  The HAGIS self-consistent nonlinear wave-particle interaction model , 1998 .

[32]  T. Luce,et al.  INTERNAL TRANSPORT BARRIERS IN JET DEUTERIUM-TRITIUM PLASMAS , 1998 .

[33]  T. Oikawa,et al.  Alfvén eigenmode and energetic particle research in JT-60U , 1998 .

[34]  W. Kerner,et al.  CORRIGENDUM: Stability of alpha particle driven Alfvén eigenmodes in high performance JET DT plasmas , 1999 .

[35]  James R. Wilson,et al.  Role of Alfvén instabilities in energetic ion transport , 1999 .

[36]  W. Kerner,et al.  CASTOR-K , 1999 .

[37]  Beam driven Alfvén eigenmodes and fishbones in JET , 2000 .

[38]  S. Pinches,et al.  Theoretical Interpretation of Alfvén Cascades in Tokamaks with Nonmonotonic q Profiles , 2001 .

[39]  T. Tala,et al.  Observation of zero current density in the core of jet discharges with lower hybrid heating and current drive. , 2001, Physical review letters.

[40]  Ambrogio Fasoli,et al.  MHD Spectroscopy through Detecting Toroidal Alfvén Eigenmodes and Alfvén Wave Cascades , 2001 .

[41]  C. D. Challis,et al.  Effect of q-profile modification by LHCD on internal transport barriers in JET*Effect of q-profile m , 2001 .

[42]  F. Imbeaux,et al.  Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus) , 2002 .