Dijkstra monads for all
暂无分享,去创建一个
Robert Atkey | Exequiel Rivas | Catalin Hritcu | Kenji Maillard | Éric Tanter | Danel Ahman | Guido Martínez | Catalin Hritcu | Exequiel Rivas | É. Tanter | R. Atkey | Guido Martínez | D. Ahman | K. Maillard
[1] Paul Hudak,et al. Monad transformers and modular interpreters , 1995, POPL '95.
[2] U. Norell,et al. Towards a practical programming language based on dependent type theory , 2007 .
[3] Juan Chen,et al. Verifying higher-order programs with the dijkstra monad , 2013, PLDI.
[4] Gordon D. Plotkin,et al. A Logic for Algebraic Effects , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[5] Lars Birkedal,et al. Ynot: dependent types for imperative programs , 2008, ICFP 2008.
[6] Alex K. Simpson,et al. Behavioural Equivalence via Modalities for Algebraic Effects , 2018, ESOP.
[7] K. Rustan M. Leino,et al. Efficient weakest preconditions , 2005, Inf. Process. Lett..
[8] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[9] WOUTER SWIERSTRA,et al. A predicate transformer semantics for effects (functional pearl) , 2019, Proc. ACM Program. Lang..
[10] Peter Dybjer,et al. The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories , 2014, Math. Struct. Comput. Sci..
[11] Gordon D. Plotkin,et al. Handling Algebraic Effects , 2013, Log. Methods Comput. Sci..
[12] Aleksandar Nanevski,et al. Hoare-style reasoning with (algebraic) continuations , 2013, ICFP.
[13] J. Gregory Morrisett,et al. Trace-based verification of imperative programs with I/O , 2011, J. Symb. Comput..
[14] Paul Blain Levy,et al. Exploring the Boundaries of Monad Tensorability on Set , 2013, Log. Methods Comput. Sci..
[15] Thierry Coquand,et al. Inductively defined types , 1988, Conference on Computer Logic.
[16] C. A. R. Hoare,et al. An axiomatic basis for computer programming , 1969, CACM.
[17] Shin-ya Katsumata,et al. Parametric effect monads and semantics of effect systems , 2014, POPL.
[18] Edsger W. Dijkstra,et al. Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.
[19] Carroll Morgan,et al. Programming from specifications (2nd ed.) , 1994 .
[20] Nick Benton,et al. Monads and Effects , 2000, APPSEM.
[21] Shin-ya Katsumata,et al. Relating computational effects by ⊤⊤-lifting , 2013, Inf. Comput..
[22] Lauretta O. Osho,et al. Axiomatic Basis for Computer Programming , 2013 .
[23] Gordon D. Plotkin,et al. Algebraic Operations and Generic Effects , 2003, Appl. Categorical Struct..
[24] Conor McBride. Turing-Completeness Totally Free , 2015, MPC.
[25] Sam Staton,et al. A Sound and Complete Logic for Algebraic Effects , 2019, FoSSaCS.
[26] Christoph Rauch,et al. Generic Hoare Logic for Order-Enriched Effects with Exceptions , 2016, WADT.
[27] Aaron Stump,et al. Generic zero-cost reuse for dependent types , 2018, PACMPL.
[28] Rance Cleaveland,et al. Implementing mathematics with the Nuprl proof development system , 1986 .
[29] S. Lindley. Reducibility and > >-lifting for Computation Types , 2004 .
[30] Lars Birkedal,et al. Hoare type theory, polymorphism and separation1 , 2008, Journal of Functional Programming.
[31] Ambrus Kaposi,et al. Signatures and Induction Principles for Higher Inductive-Inductive Types , 2020, Log. Methods Comput. Sci..
[32] Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. (Syntaxe et modèles d'une composition non-associative des programmes et des preuves) , 2013 .
[33] Thorsten Altenkirch,et al. Partiality, Revisited: The Partiality Monad as a Quotient Inductive-Inductive Type , 2017, FoSSaCS.
[34] Jeremy Avigad,et al. The Lean Theorem Prover (System Description) , 2015, CADE.
[35] Stefan Milius,et al. Coproducts of Monads on Set , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[36] Danel Ahman. Handling fibred algebraic effects , 2018, Proc. ACM Program. Lang..
[37] Rasmus Ejlers Møgelberg,et al. The enriched effect calculus: syntax and semantics , 2014, J. Log. Comput..
[38] Robert W. Floyd,et al. Nondeterministic Algorithms , 1967, JACM.
[39] John C. Reynolds,et al. Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.
[40] Roman Fric,et al. A Categorical Approach to Probability Theory , 2010, Stud Logica.
[41] Gordon D. Plotkin,et al. Combining algebraic effects with continuations , 2007, Theor. Comput. Sci..
[42] Michèle Giry,et al. A categorical approach to probability theory , 1982 .
[43] Deepak Garg,et al. Dependent Type Theory for Verification of Information Flow and Access Control Policies , 2013, TOPL.
[44] Pierre-Yves Strub,et al. Dependent types and multi-monadic effects in F* , 2016, POPL.
[45] Eugenio Moggi,et al. Monad transformers as monoid transformers , 2010, Theor. Comput. Sci..
[46] Bart Jacobs,et al. Dijkstra and Hoare monads in monadic computation , 2015, Theor. Comput. Sci..
[47] Eugenio Moggi. A Semantics for Evaluation Logic , 1995, Fundam. Informaticae.
[48] Nikhil Swamy,et al. Dijkstra monads for free , 2016, POPL.
[49] Bart Jacobs. Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..
[50] Niels F. W. Voorneveld. Quantitative Logics for Equivalence of Effectful Programs , 2019, MFPS.
[51] Ian Stark,et al. Reducibility and TT-Lifting for Computation Types , 2005, TLCA.
[52] Christoph Lüth,et al. Composing monads using coproducts , 2002, ICFP '02.
[53] Ichiro Hasuo. Generic weakest precondition semantics from monads enriched with order , 2015, Theor. Comput. Sci..