Developments in alkali -metal atomic magnetometry

Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth’s field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ √ Hz, which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170◦C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs) of the electron and the 129Xe atom, with projected sensitivity of δde=9×10−30 e-cm and δdXe=4×10−31 e-cm after 100 days of integration; both bounds are more than two orders of magnitude better than the existing experimental limits on the EDMs of the electron and of any diamagnetic atom.

[1]  Pines,et al.  Pulsed Fourier-transform NQR of 14N with a dc SQUID. , 1992, Physical review letters.

[2]  Cates,et al.  Relaxation of spins due to field inhomogeneities in gaseous samples at low magnetic fields and low pressures. , 1988, Physical review. A, General physics.

[3]  Orang Alem,et al.  Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance , 2006 .

[4]  T. Karaulanov,et al.  Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption , 2008, 0806.0663.

[5]  Marya Lieberman,et al.  Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2 , 2003 .

[6]  H. Dehmelt Modulation of a Light Beam by Precessing Absorbing Atoms , 1957 .

[7]  D. Budker,et al.  Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range , 2006, physics/0602109.

[8]  Carl Friedrich Gauss THE INTENSITY OF THE EARTH ' S MAGNETIC FORCE REDUCED TO ABSOLUTE MEASUREMENT , 2003 .

[9]  George B. Field,et al.  Influence of Collisions upon Population of Hyperfine States in Hydrogen. , 1956 .

[10]  Robert McDermott,et al.  Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields , 2002, Science.

[11]  R. Welsh,et al.  Polarized 129Xe optical pumping/spin exchange and delivery system for magnetic resonance spectroscopy and imaging studies , 1999 .

[12]  F. A. Franz Enhancement of alkali optical pumping by quenching , 1968 .

[13]  P. Sandars The electric dipole moment of an atom , 1965 .

[14]  J. A. Silver Measurement of atomic sodium and potassium diffusion coefficients , 1984 .

[15]  P. Sandars Enhancement factor for the electric dipole moment of the valence electron in an alkali atom , 1966 .

[16]  Ota Go,et al.  Remote sensing by Nuclear Quadrupole Resonance , 2005 .

[17]  G. Vasilakis,et al.  Low-noise high-density alkali-metal scalar magnetometer , 2009 .

[18]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[19]  X. Zhao,et al.  Magneto-optical trapping of radioactive {sup 82}Rb atoms , 1998 .

[20]  W. Happer,et al.  Optical determination of alkali metal vapor number density using Faraday rotation. , 1986, Applied optics.

[21]  Christoph Affolderbach,et al.  Picotesla magnetometry with coherent dark states , 2001 .

[22]  Vladislav Gerginov,et al.  Microfabricated atomic clocks and magnetometers , 2006 .

[23]  Yeazell,et al.  Observation of the collapse and revival of a Rydberg electronic wave packet. , 1990, Physical review letters.

[24]  E. Purcell,et al.  On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei , 1950 .

[25]  Hunter,et al.  New Limits on Local Lorentz Invariance from Hg and Cs Magnetometers. , 1995, Physical review letters.

[26]  Valeriy V. Yashchuk,et al.  Light-induced desorption of alkali-metal atoms from paraffin coating , 2002 .

[27]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[28]  J. Kitching,et al.  Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation , 2005 .

[29]  C. Volk,et al.  Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms , 1976 .

[30]  S. Groeger,et al.  Comparison of discharge lamp and laser pumped cesium magnetometers , 2005 .

[31]  Robert Wynands,et al.  A laser-pumped magnetometer for the mapping of human cardiomagnetic fields , 2003 .

[32]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[33]  Yong-ki Kim,et al.  Core polarization and oscillator strength ratio anomaly in potassium, rubidium and caesium , 1998 .

[34]  Michael V. Romalis,et al.  Theory of spin-exchange optical pumping of 3 He and 129 Xe , 1998 .

[35]  H. Robinson,et al.  A New Heart for Rb Frequency Standards?: The Evacuated, Wall-Coated Sealed Cell , 1983, IEEE Transactions on Instrumentation and Measurement.

[36]  K. Zhao,et al.  Regionally specific hyperfine polarization of Rb atoms in the vicinity (∼10-5 cm) of surfaces , 2005 .

[37]  T. Yabuzaki,et al.  Frequency shifts of self‐oscillating magnetometer with cesium vapor , 1974 .

[38]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[39]  Valerio Biancalana,et al.  A new class of photo-induced phenomena in siloxane films , 2001 .

[40]  J. Kitching,et al.  Chip-scale atomic magnetometer , 2004 .

[41]  Suter,et al.  Interaction of spin-polarized atoms with a surface studied by optical-reflection spectroscopy. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[42]  W. Happer,et al.  An optical pumping primer , 1987 .

[43]  D. F. Phillips,et al.  Slow light in paraffin-coated Rb vapour cells , 2006, quant-ph/0602131.

[44]  Schleich,et al.  Generic Structure of Multilevel Quantum Beats. , 1996, Physical review letters.

[45]  K. Zhao,et al.  Evanescent wave magnetometer , 2006 .

[46]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[47]  Yves J. Chabal,et al.  Testing the effect of surface coatings on alkali atom polarization lifetimes , 2008 .

[48]  I M Savukov,et al.  Detection of NMR signals with a radio-frequency atomic magnetometer. , 2007, Journal of magnetic resonance.

[49]  E. Arimondo,et al.  Experimental determinations of the hyperfine structure in the alkali atoms , 1977 .

[50]  C. Volk,et al.  Electronic spin relaxation of the 4/sup 2/S/sub 1/2/ state of K induced by K-He and K-Ne collisions , 1982 .

[51]  Selective addressing of high-rank atomic polarization moments. , 2003, Physical review letters.

[52]  R. B. Warrington,et al.  High-resolution measurement of the pressure broadening and shift of the Cs D 1 and D 2 lines by N 2 and He buffer gases , 2002 .

[53]  Dmitry Budker,et al.  Magnetic resonance imaging with an optical atomic magnetometer , 2006, Proceedings of the National Academy of Sciences.

[54]  M. Krauss,et al.  Estimating Bounds on Collisional Relaxation Rates of Spin-Polarized 87Rb Atoms at Ultracold Temperatures , 1996, Journal of research of the National Institute of Standards and Technology.

[55]  W. Happer,et al.  Wall relaxation of spin polarized 129Xe nuclei , 1983 .

[56]  A. Pines,et al.  Zero field NMR and NQR , 1985 .

[57]  S. N. Ivanov,et al.  Improved experimental limit on the electric dipole moment of the neutron. , 2006 .

[58]  W. Opęchowski Magneto-Optical Effects and Paramagnetic Resonance , 1953 .

[59]  S. Barr,et al.  The Search for a Permanent Electric Dipole Moment , 2003 .

[60]  Andrew C. Tam,et al.  Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors , 1977 .

[61]  S. Vasudevan,et al.  Characterization of Alkyl Chain Conformation in an Intercalated Cationic Lipid Bilayer by IR Spectroscopy , 2002 .

[62]  C. cohen-tannoudji,et al.  DETECTINON OF THE STATIC MAGNETIC FIELD PRODUCED BY THE ORIENTED NUCLEI OF OPTICALLY PUMPED $sup 3$He GAS. , 1969 .

[63]  A. Bloom,et al.  Optical Detection of Magnetic Resonance in Alkali Metal Vapor , 1957 .

[64]  Svenja Knappe,et al.  Miniature vapor-cell atomic-frequency references , 2002 .

[65]  S. Gozzini,et al.  Light-induced sodium desorption from paraffin film , 2008 .

[66]  M. Nabighian,et al.  The historical development of the magnetic method in exploration , 2005 .

[67]  Y. Greenberg,et al.  Application of superconducting quantum interference devices to nuclear magnetic resonance , 1998 .

[68]  W. Happer,et al.  Spin Destruction in Collisions between Cesium Atoms , 1980 .

[69]  K. Zilm,et al.  OPTICAL PUMPING MAGNETIC RESONANCE IN HIGH MAGNETIC FIELDS : CHARACTERIZATION OF NUCLEAR RELAXATION DURING PUMPING , 1996 .

[70]  Wu,et al.  Spin-rotation interaction of noble-gas alkali-metal atom pairs. , 1985, Physical review letters.

[71]  Cates,et al.  Surface relaxation mechanisms of laser-polarized 129Xe. , 1995, Physical review letters.

[72]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[73]  Robert H Kraus,et al.  Microtesla MRI of the human brain combined with MEG. , 2008, Journal of magnetic resonance.

[74]  V. Yashchuk,et al.  Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer , 2008 .

[75]  N. Koch,et al.  Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. , 2003, Journal of the American Chemical Society.

[76]  C. Wieman,et al.  STUDY OF WALL COATINGS FOR VAPOR-CELL LASER TRAPS , 1994 .

[77]  E. Commins Electric Dipole Moments of Elementary Particles, Nuclei, Atoms, and Molecules , 2007 .

[78]  T. W. Kornack,et al.  A low-noise ferrite magnetic shield , 2007 .

[79]  D. F. Kimball,et al.  Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? , 2004, Physical review letters.

[80]  M. Romalis,et al.  Intense, narrow atomic-clock resonances. , 2004, Physical review letters.

[81]  D. F. Kimball,et al.  Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells , 2004, physics/0408009.

[82]  Dana Joy Berkeland,et al.  Precise measurement of the Stark shift of the cesium D1 line , 1992 .

[83]  R. Wakai,et al.  Parametric modulation of an atomic magnetometer. , 2006, Applied physics letters.

[84]  D. Budker,et al.  Spin-Exchange-Relaxation-Free Magnetometry with Cs Vapor , 2007, 0708.1012.

[85]  N. Ressler,et al.  Measurement of Spin-Exchange Cross Sections for Cs 133 , Rb 87 , Rb 85 , K 39 , and Na 23 , 1969 .

[86]  D Budker,et al.  Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry. , 2004, Physical review letters.

[87]  W. Happer,et al.  Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors , 1973 .

[88]  W. J. Cummings,et al.  Silane coatings for laser-driven polarized hydrogen sources and targets , 1997 .

[89]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[90]  Herbert Sachs,et al.  The Physics of Time Reversal , 1987 .

[91]  A. E. Ivanov,et al.  Laser pumping in the scheme of an Mx-magnetometer , 1995 .

[92]  Klein,et al.  Observation of quantum collapse and revival in a one-atom maser. , 1987, Physical review letters.

[93]  S. J. Seltzer,et al.  Synchronous optical pumping of quantum revival beats for atomic magnetometry , 2007 .

[94]  J. Vanier,et al.  The dependence of frequency upon microwave power of wall‐coated and buffer‐gas‐filled gas cell Rb87 frequency standards , 1980 .

[95]  W. Franzen,et al.  Spin Relaxation of Optically Aligned Rubidium Vapor , 1959 .

[96]  M. Romalis,et al.  Dynamics of two overlapping spin ensembles interacting by spin exchange. , 2002, Physical review letters.

[97]  Valeriy V. Yashchuk,et al.  Sensitive Magnetometry based on Nonlinear Magneto-Optical Rotation , 2000 .

[98]  S. K. Lee,et al.  Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry , 2007, 0709.2543.

[99]  M. Romalis,et al.  Preliminary results from a test of CPT and Lorentz symmetry using a K- 3He co-magnetometer , 2008 .

[100]  B. S. Mathur,et al.  Effective Operator Formalism in Optical Pumping , 1967 .

[101]  M. Chertok,et al.  First direct observation of time-reversal non-invariance in the neutral-kaon system , 1998 .

[102]  M. Oriá,et al.  Spectroscopy of cesium atoms adsorbing and desorbing at a dielectric surface , 2002 .

[103]  Luis A. Orozco,et al.  High efficiency magneto-optical trap for unstable isotopes , 2003 .

[104]  A Bogi,et al.  Light induced atomic desorption from dry-film coatings. , 2007, The Journal of chemical physics.

[105]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[106]  A. Zewail,et al.  Reprint of: Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics , 1989 .

[107]  W. Happer,et al.  Polarization of 3 He by Spin Exchange with Optically Pumped Rb and K Vapors , 1998 .

[108]  H. Duong,et al.  High-resolution laser spectroscopy on the D1 and D2 lines of 39,40,441K using RF modulated laser light , 1981 .

[109]  Pierre-Etienne Mathé,et al.  Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case , 2006 .

[110]  Igor Savukov,et al.  Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields , 2005 .

[111]  Valerio Biancalana,et al.  Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment , 2007 .

[112]  W. Happer,et al.  Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells , 1999 .

[113]  N. Stone Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments , 2005 .

[114]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[115]  Wen Xiong,et al.  NMR study of low-pressure 129Xe gas , 1992 .

[116]  E. Commins,et al.  New limit on the electron electric dipole moment. , 2002, Physical review letters.

[117]  F. Masnou-Seeuws,et al.  Étude théorique de la relaxation d'atomes alcalins par collisions sur une paroi et sur un gaz , 1967 .

[118]  W C Griffith,et al.  New limit on the permanent electric dipole moment of 199Hg. , 2000, Physical review letters.

[119]  A. Vershovskii A new method of absolute measurement of the three components of the magnetic field , 2006 .

[120]  I. Lesanovsky,et al.  Sensing electric and magnetic fields with Bose-Einstein condensates , 2006 .

[121]  E. B. Alexandrov Recent Progress in Optically Pumped Magnetometers , 2003 .

[122]  Michael V. Romalis,et al.  Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer , 2004 .

[123]  M. Vrakking,et al.  Experimental observation of revival structures in picosecond laser-induced alignment of I2. , 2001, Physical review letters.

[124]  Françoise Grossetête,et al.  Relaxation par collisions d'échange de spin , 1964 .

[125]  A. David,et al.  A rival to Stonehenge? Geophysical survey at Stanton Drew, England , 2004, Antiquity.

[126]  Svenja Knappe,et al.  Method for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells , 2008 .

[127]  Chupp,et al.  Atomic Electric Dipole Moment Measurement Using Spin Exchange Pumped Masers of 129Xe and 3He. , 2001, Physical review letters.

[128]  R. Maboudian,et al.  Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlorosilane self-assembled monolayer , 2001 .

[129]  M. Romalis,et al.  Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer. , 2008, Physical review letters.

[130]  C. B. Alcock,et al.  Vapour Pressure Equations for the Metallic Elements: 298–2500K , 1984 .

[131]  Quantum limit of optical magnetometry in the presence of ac Stark shifts , 2000, quant-ph/0001072.

[132]  Y. K. Lee Spin‐1 nuclear quadrupole resonance theory with comparisons to nuclear magnetic resonance , 2002 .

[133]  Thad G. Walker,et al.  Measurement of potassium-potassium spin relaxation cross sections , 1998 .

[134]  A. Emslie,et al.  Atomic Orientation by Optical Pumping , 1957 .

[135]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[136]  I. Khriplovich,et al.  Cp Violation Without Strangeness , 1997 .

[137]  E. Lindroth,et al.  Parity non-conservation and electric dipole moments in caesium and thallium , 1990 .

[138]  White,et al.  Spin relaxation in gases due to inhomogeneous static and oscillating magnetic fields. , 1988, Physical review. A, General physics.

[139]  Samuel Krimm,et al.  Vibrational spectra in the CH stretching region and the structure of the polymethylene chain , 1978 .

[140]  Wu,et al.  Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali-metal-noble-gas van der Waals molecules. , 1985, Physical review. A, General physics.

[141]  D. McGregor,et al.  High‐sensitivity helium resonance magnetometers , 1987 .

[142]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[143]  D. Petrosyan,et al.  High frequency atomic magnetometer by use of electromagnetically induced transparency. , 2006, Physical review letters.

[144]  Svenja Knappe,et al.  Subpicotesla atomic magnetometry with a microfabricated vapour cell , 2007 .

[145]  T. Walker,et al.  Spin-exchange optical pumping of noble-gas nuclei , 1997 .

[146]  H. Schmoranzer,et al.  PRECISION LIFETIME MEASUREMENTS ON ALKALI ATOMS AND ON HELIUM BY BEAM-GAS-LASER SPECTROSCOPY , 1996 .

[147]  Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation , 2006, physics/0609196.

[148]  H. Rabitz,et al.  Enhanced molecular alignment by short laser pulses , 2004 .

[149]  D. F. Kimball,et al.  Relaxation of atomic polarization in paraffin-coated cesium vapor cells (13 pages) , 2005 .

[150]  S. Knappe,et al.  An all-optical, high-sensitivity magnetic gradiometer , 2002 .

[151]  Joel B. Miller,et al.  Narcotics and explosives detection by 14N pure nuclear quadrupole resonance , 1994, Other Conferences.

[152]  I. Rabi,et al.  Measurement of Nuclear Spin , 1931 .

[153]  T. Carver,et al.  Optical Pumping. , 1963, Science.

[154]  J. Kitching,et al.  Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells , 2005, physics/0511003.

[155]  R. W. Robinett Quantum wave packet revivals , 2004 .

[156]  Three-component variometer based on a scalar potassium sensor , 2004 .

[157]  S. Vega Theory of T1 relaxation measurements in pure nuclear quadrupole resonance for spins / = 1 , 1974 .

[158]  H. Dehmelt,et al.  Slow Spin Relaxation of Optically Polarized Sodium Atoms , 1957 .

[159]  Mingji Wang,et al.  Self-assembled silane monolayers: fabrication with nanoscale uniformity. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[160]  Andreas F. Molisch,et al.  Radiation Trapping in Atomic Vapours , 1999 .

[161]  H. Kratz The Principal Series of Potassium, Rubidium, and Cesium in Absorption , 1949 .

[162]  D. F. Kimball,et al.  Dynamic effects in nonlinear magneto-optics of atoms and molecules: review , 2005 .

[163]  J. Brossel,et al.  Relaxation of Optically Pumped Rb Atoms on Paraffin-Coated Walls , 1966 .

[164]  M. Romalis,et al.  High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings , 2009, 0906.3054.

[165]  Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals , 2005, cond-mat/0509083.

[166]  E. Miron,et al.  Pressure broadening of Rb D 1 and D 2 lines by 3 He, 4 He, N 2 , and Xe: Line cores and near wings , 1997 .

[167]  S. Butterworth Eddy-Current Losses in Cylindrical Conductors, with Special Applications to the Alternating Current Resistances of Short Coils , 1922 .

[168]  A. Bloom,et al.  OPTICALLY DRIVEN SPIN PRECESSION , 1961 .

[169]  Valeriy V. Yashchuk,et al.  Production and Detection of Atomic Hexadecapole at Earth's Magnetic Field , 2007 .

[170]  Allen N. Garroway,et al.  Detection of 14N and 35Cl in Cocaine Base and Hydrochloride Using NQR, NMR, and SQUID Techniques , 1995 .

[171]  Majumder,et al.  Test of the linearity of quantum mechanics in optically pumped 201Hg. , 1990, Physical review letters.

[172]  Harvey Gould,et al.  Efficient Collection of 221Fr into a Vapor Cell Magneto-optical Trap , 1997 .

[173]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[174]  M. Romalis,et al.  NMR detection with an atomic magnetometer. , 2005, Physical review letters.

[175]  Dyson,et al.  Transverse spin relaxation in inhomogeneous magnetic fields. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[176]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[177]  B. Jaduszliwer,et al.  Alkali reactions with wall coating materials used in atomic resonance cells , 1987 .

[178]  G. Bison,et al.  A high-sensitivity laser-pumped Mx magnetometer , 2004, physics/0406105.

[179]  R. Maboudian,et al.  Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments , 2000 .

[180]  Valerio Biancalana,et al.  Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption , 2003 .

[181]  D. McCartan,et al.  Collision broadening of the sodium resonance lines by noble gases , 1976 .

[182]  M. Romalis,et al.  Tunable atomic magnetometer for detection of radio-frequency magnetic fields. , 2005, Physical review letters.

[183]  A. Corney,et al.  Atomic and laser spectroscopy , 1977 .

[184]  L. Anderson,et al.  Relaxation rates for optically pumped Na vapor on silicone surfaces , 1988 .

[185]  M. Rosenberry,et al.  Radiation trapping in rubidium optical pumping at low buffer-gas pressures , 2007 .

[186]  U. Fano Description of States in Quantum Mechanics by Density Matrix and Operator Techniques , 1957 .

[187]  S. M. Klainer,et al.  Multiple spin echoes in pure quadrupole resonance , 1977 .

[188]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[189]  M. Romalis,et al.  Nuclear spin gyroscope based on an atomic comagnetometer. , 2005, Physical review letters.

[190]  H. Itozaki,et al.  Improving the sensitivity of a high-Tc SQUID at MHz frequency using a normal metal transformer , 2006 .

[191]  Murthy,et al.  New limits on the electron electric dipole moment from cesium. , 1989, Physical review letters.

[192]  R. Norberg,et al.  NUCLEAR QUADRUPOLE RELAXATION AND CHEMICAL SHIFT OF $sup 131$Xe IN LIQUID AND SOLID XENON , 1966 .