Mapping Phyllosilicates on the Asteroid Bennu Using Thermal Emission Spectra and Machine Learning Model Applications

Bennu, the target of the OSIRIS‐REx mission, is an asteroid with compositions analogous to low petrologic type CI, CM, CR, and/or ungrouped carbonaceous chondrites. Asteroids like Bennu provide information about the building blocks of the early Solar System. Analysis of the mid‐infrared remote sensing data informs mineral quantification. We apply a phyllosilicate specific model, developed by Breitenfeld et al. (2021, https://doi.org/10.1029/2021je007035) that distinguishes between Mg and Fe serpentines, to Baseball Diamond 1 (BBD1), equatorial station 3 (EQ3), and touch‐and‐go OSIRIS‐REx thermal emission spectrometer data. The average total phyllosilicate predictions are 73 (BBD1) and 72 vol% (EQ3). We observe higher Fe‐cronstedtite and lower Mg‐rich serpentine content in the equatorial region of Bennu than average. Mid‐infrared spectral variability may be explained by sorting effects through mass movement.

[1]  V. Hamilton,et al.  GRO 95577 (CR1) as a mineralogical analogue for asteroid (101955) Bennu , 2022, Icarus.

[2]  V. Hamilton,et al.  Machine Learning Mid‐Infrared Spectral Models for Predicting Modal Mineralogy of CI/CM Chondritic Asteroids and Bennu , 2021, Journal of Geophysical Research: Planets.

[3]  V. Hamilton,et al.  Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy , 2021, Astronomy & Astrophysics.

[4]  D. Reuter,et al.  In search of Bennu analogs: Hapke modeling of meteorite mixtures , 2021, Astronomy & Astrophysics.

[5]  S. Sandford,et al.  Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history , 2020, Science.

[6]  D. Reuter,et al.  Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator , 2020, Science Advances.

[7]  D. Reuter,et al.  Exogenic basalt on asteroid (101955) Bennu , 2020 .

[8]  D. DellaGiustina,et al.  Global Patterns of Recent Mass Movement on Asteroid (101955) Bennu , 2020, Journal of Geophysical Research: Planets.

[9]  D. DellaGiustina,et al.  In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface , 2020, Nature Communications.

[10]  S. Russell,et al.  Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return , 2019, Meteoritics & Planetary Science.

[11]  M. K. Crombie,et al.  Evidence for widespread hydrated minerals on asteroid (101955) Bennu , 2019, Nature Astronomy.

[12]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[13]  M. K. Crombie,et al.  Shape of (101955) Bennu indicative of a rubble pile with internal stiffness , 2019, Nature geoscience.

[14]  S. Ferrone Analysis of Projection Effects in OSIRIS-REx Spectral Mapping Methods , 2019 .

[15]  Matthew Underhill,et al.  The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument , 2016, Astronomical Telescopes + Instrumentation.

[16]  K. Howard,et al.  Modal mineralogy of CI and CI-like chondrites by X-ray diffraction , 2015 .

[17]  K. A. Dyl,et al.  Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments , 2015 .

[18]  S. Messenger,et al.  Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer Planning (OSIRIS-REx) , 2014 .

[19]  M. Zolensky,et al.  Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) , 2012 .

[20]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[21]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[22]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[23]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[24]  J. Thomson,et al.  The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .

[25]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[26]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[27]  H. McSween,et al.  Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .

[28]  M. Zolensky,et al.  Replacement of olivine by serpentine in the queen alexandra range 93005 carbonaceous chondrite (CM2): Reactant-product compositional relations, and isovolumetric constraints on reaction stoichiometry and elemental mobility during aqueous alteration , 2015 .