A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing Journal Item

[1]  I. P'erez-Fournon,et al.  Witnessing the birth of the red sequence: the physical scale and morphology of dust emission in hyper-luminous starbursts in the early Universe , 2017, 1709.04191.

[2]  S. Maddox,et al.  The most distant, luminous, dusty star-forming galaxies: redshifts from NOEMA and ALMA spectral scans , 2017, 1707.08967.

[3]  A. Weiss,et al.  Rise of the Titans: A Dusty, Hyper-luminous “870 μm Riser” Galaxy at z ∼ 6 , 2017, 1705.09660.

[4]  J. E. Carlstrom,et al.  ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7 , 2017, 1705.07912.

[5]  H. Rix,et al.  Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6 , 2017, Nature.

[6]  S. Faber,et al.  Constraining the galaxy–halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties , 2017, 1703.04542.

[7]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[8]  J. Dunlop,et al.  The SCUBA-2 Cosmology Legacy Survey : the nature of bright submm galaxies from 2 deg2 of 850-μm imaging. , 2016, 1610.02409.

[9]  C. Conselice,et al.  The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS UDS , 2016, 1611.03084.

[10]  P. P. van der Werf,et al.  THE SPACE DENSITY OF LUMINOUS DUSTY STAR-FORMING GALAXIES AT z > 4: SCUBA-2 AND LABOCA IMAGING OF ULTRARED GALAXIES FROM HERSCHEL-ATLAS , 2016, 1611.00762.

[11]  C. C. Chen,et al.  KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES , 2016, The Astrophysical Journal.

[12]  A. Weiss,et al.  Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z ~ 2–4 , 2016, 1607.06220.

[13]  S. Maddox,et al.  The Herschel-ATLAS data release 1: I. Maps, catalogues and number counts , 2016, 1606.09615.

[14]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[15]  A. Stark,et al.  A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z > 2 , 2016, 1602.00652.

[16]  S. Maddox,et al.  WITNESSING THE BIRTH OF THE RED SEQUENCE: ALMA HIGH-RESOLUTION IMAGING OF AND DUST IN TWO INTERACTING ULTRA-RED STARBURSTS AT z = 4.425 , 2016, 1601.07549.

[17]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[18]  S. Veilleux,et al.  The far-infrared emitting region in local galaxies and QSOs: Size and scaling relations , 2015, 1511.02075.

[19]  J. Vieira,et al.  STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY , 2015, 1509.02835.

[20]  K. Souccar,et al.  Early Science with the Large Millimeter Telescope: CO and [C ii] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1) , 2015, 1508.05425.

[21]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[22]  S. E. Persson,et al.  THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT z ∼ 4 WITH ZFOURGE AND CANDELS , 2015, 1506.01380.

[23]  Ran Wang,et al.  STAR FORMATION AND THE INTERSTELLAR MEDIUM IN z>6 UV-LUMINOUS LYMAN-BREAK GALAXIES , 2015, 1504.05875.

[24]  F. Walter,et al.  AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING , 2015, 1504.04376.

[25]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[26]  D. Watson,et al.  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[27]  J. Carlstrom,et al.  The nature of the [C II] emission in dusty star-forming galaxies from the SPT survey , 2015, 1501.06909.

[28]  A. Fontana,et al.  A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT , 2014, 1408.3684.

[29]  P. P. van der Werf,et al.  STAR FORMATION RELATIONS AND CO SPECTRAL LINE ENERGY DISTRIBUTIONS ACROSS THE J-LADDER AND REDSHIFT , 2014, 1407.4400.

[30]  D. Watson,et al.  HerMES: THE REST-FRAME UV EMISSION AND A LENSING MODEL FOR THE z = 6.34 LUMINOUS DUSTY STARBURST GALAXY HFLS3 , 2014, 1404.1378.

[31]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[32]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[33]  B. Groves,et al.  ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS , 2013, The Astrophysical Journal.

[34]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[35]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[36]  D. Elbaz,et al.  GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT , 2012, The Astrophysical Journal.

[37]  R. Ellis,et al.  The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field , 2012, Nature.

[38]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[39]  P. P. van der Werf,et al.  THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE Xco FACTOR , 2012, 1202.1803.

[40]  A. Cimatti,et al.  A Herschel view of the far-infrared properties of submillimetre galaxies , 2012, 1202.0761.

[41]  I. Smail,et al.  A bright z = 5.2 lensed submillimeter galaxy in the field of Abell 773 - HLSJ091828.6+514223 , 2012, 1201.2908.

[42]  D. Elbaz,et al.  The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts , 2011, 1109.2887.

[43]  A. M. Swinbank,et al.  The potential influence of far-infrared emission lines on the selection of high-redshift galaxies , 2011, 1104.1758.

[44]  M. Salvato,et al.  A massive protocluster of galaxies at a redshift of z ≈ 5.3 , 2011, Nature.

[45]  F. Bertoldi,et al.  MOST SUBMILLIMETER GALAXIES ARE MAJOR MERGERS , 2010, 1009.2495.

[46]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[47]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[48]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[49]  Jens Hjorth,et al.  Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly , 2009, 0905.4499.

[50]  Christine D. Wilson,et al.  Luminous Infrared Galaxies with the Submillimeter Array. I. Survey Overview and the Central Gas to Dust Ratio , 2008, 0806.3002.

[51]  K. Souccar,et al.  The AzTEC mm-wavelength camera , 2008, 0801.2783.

[52]  C. I. O. Technology.,et al.  AzTEC millimetre survey of the COSMOS field – I. Data reduction and source catalogue , 2008, 0801.2779.

[53]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[54]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[55]  F. Peter Schloerb,et al.  The Large Millimeter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[56]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[57]  Wodek Gawronski,et al.  Large Millimeter Telescope , 2005 .

[58]  L. Dunne,et al.  Type II supernovae as a significant source of interstellar dust , 2003, Nature.

[59]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[60]  L. Dunne,et al.  SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass , 2002, astro-ph/0204519.

[61]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[62]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[63]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[64]  Hilo,et al.  Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.

[65]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[66]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[67]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[68]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[69]  M. Wright,et al.  A retrospective view of Miriad , 2006, astro-ph/0612759.

[70]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[71]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[72]  E. Salpeter The Luminosity function and stellar evolution , 1955 .