Deterministic characterization of stochastic genetic circuits

For cellular biochemical reaction systems where the numbers of molecules is small, significant noise is associated with chemical reaction events. This molecular noise can give rise to behavior that is very different from the predictions of deterministic rate equation models. Unfortunately, there are few analytic methods for examining the qualitative behavior of stochastic systems. Here we describe such a method that extends deterministic analysis to include leading-order corrections due to the molecular noise. The method allows the steady-state behavior of the stochastic model to be easily computed, facilitates the mapping of stability phase diagrams that include stochastic effects, and reveals how model parameters affect noise susceptibility in a manner not accessible to numerical simulation. By way of illustration we consider two genetic circuits: a bistable positive-feedback loop and a negative-feedback oscillator. We find in the positive feedback circuit that translational activation leads to a far more stable system than transcriptional control. Conversely, in a negative-feedback loop triggered by a positive-feedback switch, the stochasticity of transcriptional control is harnessed to generate reproducible oscillations.

[1]  王丹,et al.  Plos Computational Biology主编关于论文获得发表的10条简单法则的评析 , 2009 .

[2]  Van Kampen,et al.  The Expansion of the Master Equation , 2007 .

[3]  B. Ingalls,et al.  Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. , 2006, Chaos.

[4]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[5]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[6]  Juan F. Poyatos,et al.  Dynamical Principles of Two-Component Genetic Oscillators , 2006, PLoS Comput. Biol..

[7]  Eric Vanden-Eijnden,et al.  Non-meanfield deterministic limits in chemical reaction kinetics. , 2005, The Journal of chemical physics.

[8]  P. R. ten Wolde,et al.  Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks. , 2005, Physical review letters.

[9]  J. Onuchic,et al.  Absolute rate theories of epigenetic stability. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Eric D Siggia,et al.  Shake it, don't break it: positive feedback and the evolution of oscillator design. , 2005, Developmental cell.

[11]  James E. Ferrell,et al.  Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations , 2005, Cell.

[12]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[13]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[14]  Nir Friedman,et al.  Quantitative kinetic analysis of the bacteriophage λ genetic network , 2005 .

[15]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[16]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[17]  Kazuyuki Aihara,et al.  Multivariate analysis of noise in genetic regulatory networks. , 2004, Journal of theoretical biology.

[18]  Jürgen Kurths,et al.  Constructive effects of fluctuations in genetic and biochemical regulatory systems. , 2003, Bio Systems.

[19]  Mads Kaern,et al.  The engineering of gene regulatory networks. , 2003, Annual review of biomedical engineering.

[20]  J. Elf,et al.  Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. , 2003, Genome research.

[21]  Farren J. Isaacs,et al.  Prediction and measurement of an autoregulatory genetic module , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[23]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[24]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[25]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[28]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[29]  K. Sneppen,et al.  Epigenetics as a first exit problem. , 2001, Physical review letters.

[30]  S. Rice,et al.  ADVANCES IN CHEMICAL PHYSICS , 2002 .

[31]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[32]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[34]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[36]  Michael Menzinger,et al.  On the local stability of limit cycles. , 1999, Chaos.

[37]  J. Dunlap Molecular Bases for Circadian Clocks , 1999, Cell.

[38]  Kenneth R. Diller,et al.  Annual review of biomedical engineering , 1999 .

[39]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[40]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[41]  A. Keller,et al.  Model genetic circuits encoding autoregulatory transcription factors. , 1995, Journal of theoretical biology.

[42]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[43]  Nature Genetics , 1991, Nature.

[44]  J. Mattick,et al.  Genome research , 1990, Nature.

[45]  Physical Review Letters 63 , 1989 .

[46]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[47]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[48]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[49]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[50]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[51]  H. Riezman,et al.  Transcription and translation initiation frequencies of the Escherichia coli lac operon. , 1977, Journal of molecular biology.

[52]  N. G. van Kampen,et al.  Stochastic differential equations , 1976 .

[53]  R. K. Miller,et al.  Nonlinear Volterra integrodifferential systems with L1-kernels☆ , 1973 .

[54]  R. Bourret Ficton theory of dynamical systems with noisy parameters , 1965 .

[55]  D. R. Cox Journal of Applied Probability , 1964, Canadian Mathematical Bulletin.

[56]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[57]  S. Lowen The Biophysical Journal , 1960, Nature.

[58]  Journal of Molecular Biology , 1959, Nature.

[59]  Journal of Chemical Physics , 1932, Nature.

[60]  R. K. Brown BIOPHYSICS , 1931 .

[61]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[62]  October I Physical Review Letters , 2022 .

[63]  I. Khabaza Journal of Differential Equations , 2022 .

[64]  Physics Reports , 2022 .