Poly(arylene pyridine)s: New alternative materials for high temperature polymer electrolyte fuel cells

[1]  Xuefu Che,et al.  New high-performance bulky N-heterocyclic group functionalized poly(terphenyl piperidinium) membranes for HT-PEMFC applications , 2022, Journal of Membrane Science.

[2]  Cy H. Fujimoto,et al.  Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells , 2020, Nature Materials.

[3]  K. Geng,et al.  Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells , 2020 .

[4]  Gui-Ping Tian,et al.  Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes , 2020, Journal of Membrane Science.

[5]  D. Aili,et al.  Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress , 2020, Electrochemical Energy Reviews.

[6]  Min Liu,et al.  Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride) based high temperature proton exchange membranes , 2020 .

[7]  Hyoung-Juhn Kim,et al.  Polybenzimidazole / tetrazole-modified poly(arylene ether) blend membranes for high temperature proton exchange membrane fuel cells , 2020 .

[8]  J. Kallitsis,et al.  Crosslinked polymer electrolytes of high pyridine contents for HT-PEM fuel cells , 2020 .

[9]  Shuang Wang,et al.  Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications , 2020 .

[10]  L. Zhuang,et al.  Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells , 2019 .

[11]  L. Wang,et al.  Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells , 2019, Journal of Membrane Science.

[12]  Brian P. Setzler,et al.  Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells , 2019, Nature Energy.

[13]  Shanfu Lu,et al.  A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application , 2019, Journal of Membrane Science.

[14]  Huanhuan Li,et al.  Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes , 2018, Fibers and Polymers.

[15]  Sreekumar Kurungot,et al.  Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method , 2018, Journal of Membrane Science.

[16]  L. Zhuang,et al.  Alkaline polymer electrolyte fuel cells stably working at 80 °C , 2018, Journal of Power Sources.

[17]  Jingshuai Yang,et al.  New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells , 2018 .

[18]  Thanh Huong Pham,et al.  Poly(arylene piperidinium) Hydroxide Ion Exchange Membranes: Synthesis, Alkaline Stability, and Conductivity , 2018 .

[19]  H. Na,et al.  1,2,4-Triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability , 2018 .

[20]  Liping Zhao,et al.  Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction , 2018 .

[21]  Qiong Zhou,et al.  Effect of Methylimidazole Groups on the Performance of Poly(phenylene oxide) Based Membrane for High-Temperature Proton Exchange Membrane Fuel Cells , 2017 .

[22]  D. Aili,et al.  Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .

[23]  Liang Ge,et al.  Ion exchange membranes: New developments and applications , 2017 .

[24]  R. He,et al.  Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes , 2015 .

[25]  Jonghee Han,et al.  Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links , 2015 .

[26]  Qianbiao Li,et al.  A novel poly(2,6-dimethyl-1,4-phenylene oxide) with pendant imidazolium groups for high-temperature proton exchange membrane , 2014 .

[27]  Ronghuan He,et al.  High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC , 2014 .

[28]  Qingfeng Li,et al.  Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells , 2013 .

[29]  D. Aili,et al.  Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells , 2013 .

[30]  L. Cleemann,et al.  Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications , 2013 .

[31]  L. Cleemann,et al.  Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells , 2012 .

[32]  B. Yi,et al.  High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. , 2012, ChemSusChem.

[33]  D. Aili,et al.  Thermal curing of PBI membranes for high temperature PEM fuel cells , 2012 .

[34]  J. Kallitsis,et al.  High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells , 2011 .

[35]  J. Kallitsis,et al.  The effect of structural variations on aromatic polyethers for high‐temperature PEM fuel cells , 2011 .

[36]  R. Savinell,et al.  Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix , 2011 .

[37]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.

[38]  Nora Gourdoupi,et al.  New proton conducting polymer blends and their fuel cell performance , 2010 .

[39]  K. Scott,et al.  A poly(R1R2R3)-N+/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells , 2009 .

[40]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[41]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[42]  Yanghua Tang,et al.  Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C , 2007 .

[43]  Ronghuan He,et al.  Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells , 2006 .

[44]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[45]  S. Fomine,et al.  Remarkable enhancement of reactivity of carbonyl compounds for polymerizations with non-activated aromatic hydrocarbons. , 2004, Chemical communications.

[46]  A. Panchenko,et al.  In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications , 2004 .

[47]  V. Deimede,et al.  Novel Proton-Conducting Polyelectrolyte Composed of an Aromatic Polyether Containing Main-Chain Pyridine Units for Fuel Cell Applications , 2003 .

[48]  E. Roduner,et al.  EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes , 1999 .

[49]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .