Analysis of lunar wrinkle ridges regarding the maximum displacement–length scaling relationship and relevant geological factors

[1]  S. Yalovsky,et al.  Microtubule-associated ROP interactors affect microtubule dynamics and modulate cell wall patterning and root hair growth , 2022, Development.

[2]  T. Watters Lunar Wrinkle Ridges and the Evolution of the Nearside Lithosphere , 2022, Journal of Geophysical Research: Planets.

[3]  T. Kenkmann,et al.  Figures of “circum-Tharsis wrinkle ridges at Lunae Planum: Morphometry, formation, and crustal implications” , 2021, Icarus.

[4]  K. Kawai,et al.  A global investigation of wrinkle ridge formation events; Implications towards the thermal evolution of Mars , 2021 .

[5]  J. Andrews‐Hanna The tectonic architecture of wrinkle ridges on Mars , 2020 .

[6]  Newell J. Trask,et al.  The Geologic History of the Moon , 2020 .

[7]  W. Griffith,et al.  Self-similar length-displacement scaling achieved by scale-dependent growth processes: Evidence from the Atacama Fault System , 2020 .

[8]  Honglin He,et al.  Investigating thrust-fault growth and segment linkage using displacement distribution analysis in the active Duzhanzi thrust fault zone, Northern Tian Shan of China , 2020 .

[9]  G. Rubenfeld Fault. , 2019, Annals of internal medicine.

[10]  T. Watters,et al.  Wrinkle ridges on Mercury and the Moon within and outside of mascons , 2019, Icarus.

[11]  K. Crane Structural interpretation of thrust fault-related landforms on Mercury using Earth analogue fault models , 2019 .

[12]  C. Klimczak,et al.  A 3-D structural model of the Saddle Mountains, Yakima Fold Province, Washington, USA: Implications for Late Tertiary tectonic evolution of the Columbia River Flood Basalt Province , 2019, Tectonophysics.

[13]  A. Basilevsky,et al.  Young wrinkle ridges in Mare Imbrium: Evidence for very recent compressional tectonism , 2019, Icarus.

[14]  J. Bell,et al.  Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution , 2019, Icarus.

[15]  C. Johnson,et al.  Shallow seismic activity and young thrust faults on the Moon , 2019, Nature Geoscience.

[16]  Jiang Zhang,et al.  Displacement-length ratios and contractional strains of lunar wrinkle ridges in Mare Serenitatis and Mare Tranquillitatis , 2018 .

[17]  B. Hapke,et al.  Lunar mare TiO2 abundances estimated from UV/Vis reflectance , 2017 .

[18]  H. Hiesinger,et al.  Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps , 2017 .

[19]  K. Di,et al.  Global survey of lunar wrinkle ridge formation times , 2017 .

[20]  M. Zuber,et al.  Deep-seated thrust faults bound the Mare Crisium lunar mascon , 2015 .

[21]  M. Robinson,et al.  Global thrust faulting on the Moon and the influence of tidal stresses , 2015 .

[22]  Sami W. Asmar,et al.  Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements , 2015, Science Advances.

[23]  Z. S. Liu,et al.  Global mapping and analysis of lunar wrinkle ridges , 2015 .

[24]  J. Andrews‐Hanna,et al.  The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars , 2015, Journal of geophysical research. Planets.

[25]  Mark S. Robinson,et al.  New Mosaicked Data Products from the LROC Team , 2015 .

[26]  A. M. Celâl Şengör,et al.  Mercury’s global contraction much greater than earlier estimates , 2014 .

[27]  P. Spudis,et al.  Geology and composition of the Orientale Basin impact melt sheet , 2014 .

[28]  David E. Smith,et al.  The Origin of Lunar Mascon Basins , 2013, Science.

[29]  Donald M. Reeves,et al.  Statistical tests of scaling relationships for geologic structures , 2013 .

[30]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[31]  H. Melosh,et al.  On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury's northern plains , 2012 .

[32]  B. Grasemann,et al.  Displacement–length scaling of brittle faults in ductile shear , 2011, Journal of structural geology.

[33]  Ralf Jaumann,et al.  Ages and stratigraphy of lunar mare basalts: A synthesis , 2011 .

[34]  Erwan Mazarico,et al.  Illumination conditions of the lunar polar regions using LOLA topography , 2011 .

[35]  P. Thomas,et al.  Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera , 2010, Science.

[36]  T. Watters,et al.  Interpretation and analysis of planetary structures , 2010 .

[37]  D. Reeves,et al.  Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them , 2008 .

[38]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[39]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[40]  R. Schultz,et al.  Variability in Early Amazonian Tharsis stress state based on wrinkle ridges and strike-slip faulting , 2006 .

[41]  R. Schultz,et al.  Displacement-length scaling relations for faults on the terrestrial planets , 2006 .

[42]  T. Watters Elastic dislocation modeling of wrinkle ridges on Mars , 2004 .

[43]  Jon E. Olson,et al.  Sublinear scaling of fracture aperture versus length: An exception or the rule? , 2003 .

[44]  R. Schultz A method to relate initial elastic stress to fault population strains , 2003 .

[45]  M. Zuber,et al.  Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability , 2003 .

[46]  R. Schultz,et al.  Displacement–length scaling in three dimensions: the importance of aspect ratio and application to deformation bands , 2002 .

[47]  R. Jaumann,et al.  Lunar mare basalt flow units: Thicknesses determined from crater size‐frequency distributions , 2002 .

[48]  M. Zuber,et al.  Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA , 2001 .

[49]  H. Melosh,et al.  Tectonics of mascon loading: Resolution of the strike‐slip faulting paradox , 2001 .

[50]  Ralf Jaumann,et al.  Ages of Mare Basalts on the Lunar Nearside: A Synthesis , 2000 .

[51]  M. Robinson,et al.  Displacement‐length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults , 2000 .

[52]  Richard A. Schultz,et al.  Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure , 2000 .

[53]  P. Spudis,et al.  Compositional studies of the Orientale, Humorum, Nectaris, and Crisium lunar basins , 2000 .

[54]  A. C. Cook,et al.  Topography of lobate scarps on Mercury: New constraints on the planet's contraction , 1998 .

[55]  M. Robinson,et al.  Radar and photoclinometric studies of wrinkle ridges on Mars , 1997 .

[56]  R. M. Clark,et al.  A modern regression approach to determining fault displacement-length scaling relationships , 1996 .

[57]  Patience A. Cowie,et al.  Displacement-length scaling relationship for faults: data synthesis and discussion , 1992 .

[58]  Patience A. Cowie,et al.  Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model , 1992 .

[59]  Patience A. Cowie,et al.  Determination of total strain from faulting using slip measurements , 1990, Nature.

[60]  T. Watters Wrinkle ridge assemblages on the terrestrial planets , 1988 .

[61]  G. Fielder Lunar tectonics , 1963, Quarterly Journal of the Geological Society of London.

[62]  M. Robinson,et al.  LUNAR RECONNAISSANCE ORBITER CAMERA GLOBAL MORPHOLOGICAL MAP OF THE MOON , 2011 .

[63]  Isaac Asimov,et al.  The Earth's Moon , 1988 .

[64]  De Hon Thickness of the western mare basalts. , 1979 .

[65]  De Hon Thickness of mare material in the Tranquillitatis and Nectaris basins , 1974 .