Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.

Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

[1]  Georg Jansen,et al.  The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential , 2003 .

[2]  Robert M Parrish,et al.  Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition. , 2014, Journal of chemical theory and computation.

[3]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[4]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of three-body nonadditivity in Ar trimer , 1997 .

[5]  Krzysztof Szalewicz,et al.  Intermolecular forces from asymptotically corrected density functional description of monomers , 2002 .

[6]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[7]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients , 2000 .

[8]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[9]  John B. O. Mitchell,et al.  The nature of the N  H…︁OC hydrogen bond: An intermolecular perturbation theory study of the formamide/formaldehyde complex , 1990 .

[10]  Jesse G. McDaniel,et al.  Ab Initio, Physically Motivated Force Fields for CO2 Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[11]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[12]  B. Rice,et al.  Predicting structure of molecular crystals from first principles. , 2008, Physical review letters.

[13]  Sarah L. Price,et al.  A first principles prediction of the crystal structure of C6Br2ClFH2 , 2008 .

[14]  B. Rice,et al.  A molecular dynamics study of 1,1-diamino-2,2-dinitroethylene (FOX-7) crystal using a symmetry adapted perturbation theory-based intermolecular force field. , 2011, Physical chemistry chemical physics : PCCP.

[15]  P. Jankowski,et al.  Ab initio water pair potential with flexible monomers. , 2015, The journal of physical chemistry. A.

[16]  Jesse G. McDaniel,et al.  Physically-motivated force fields from symmetry-adapted perturbation theory. , 2013, The journal of physical chemistry. A.

[17]  P. Wormer,et al.  Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3 , 1989 .

[18]  Krzysztof Szalewicz,et al.  Predictions of the Properties of Water from First Principles , 2007, Science.

[19]  K. Szalewicz Determination of structure and properties of molecular crystals from first principles. , 2014, Accounts of chemical research.

[20]  K. Szalewicz,et al.  Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. , 2007, The Journal of chemical physics.

[21]  Jesse G. McDaniel,et al.  Physically motivated, robust, ab initio force fields for CO2 and N2. , 2011, The journal of physical chemistry. B.

[22]  A. Sum,et al.  Ab initio pair potentials and phase equilibria predictions of halogenated compounds , 2002 .

[23]  A. Sum,et al.  Ab initio pair potential and phase equilibria predictions for the refrigerant methyl fluoride , 2002 .

[24]  M. Kraft,et al.  Assessing the polycyclic aromatic hydrocarbon anisotropic potential with application to the exfoliation energy of graphite. , 2011, The journal of physical chemistry. A.

[25]  A. Sum,et al.  Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. I. Pure components , 2002 .

[26]  Randall Q. Snurr,et al.  Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks , 2015 .

[27]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[28]  Betsy M. Rice,et al.  Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory , 1999 .

[29]  S. Price,et al.  A Systematic Nonempirical Method of Deriving Model Intermolecular Potentials for Organic Molecules: Application To Amides , 2000 .

[30]  A. Misquitta,et al.  Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory. , 2013, Journal of chemical theory and computation.

[31]  Jean-Philip Piquemal,et al.  GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[32]  Krzysztof Szalewicz,et al.  Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. , 2005, The Journal of chemical physics.

[33]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[34]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer , 2000 .

[35]  K. Szalewicz,et al.  Ab initio three-body interactions for water. I. Potential and structure of water trimer , 2003 .

[36]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory , 1996 .

[37]  K. Szalewicz Interplay between theory and experiment in investigations of molecules embedded in superfluid helium nanodroplets , 2008 .

[38]  K. Szalewicz,et al.  Pair potential for water from symmetry-adapted perturbation theory , 1997 .

[39]  Jesse G. McDaniel,et al.  Microscopic Origins of Enhanced Gas Adsorption and Selectivity in Mixed-Linker Metal–Organic Frameworks , 2013 .

[40]  Krzysztof Szalewicz,et al.  Dispersion energy from density-functional theory description of monomers. , 2003, Physical review letters.

[41]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[42]  P. Jankowski,et al.  Spectra of N2–HF from symmetry-adapted perturbation theory potential , 2001 .

[43]  K. Szalewicz,et al.  Third virial coefficient of argon , 1999 .

[44]  W. J. Stevens,et al.  Transferability of molecular distributed polarizabilities from a simple localized orbital based method , 1989 .

[45]  P. Wormer,et al.  Intermolecular potential and rovibrational levels of Ar-HF from symmetry-adapted perturbation theory , 1995 .

[46]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[47]  Claude Millot,et al.  Revised Anisotropic Site Potentials for the Water Dimer and Calculated Properties , 1998 .

[48]  M. V. Subbotin,et al.  A quantum mechanical polarizable force field for biomolecular interactions , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Gordon,et al.  Accurate first principles model potentials for intermolecular interactions. , 2013, Annual review of physical chemistry.

[50]  A. Stone,et al.  Dispersion energies for small organic molecules: first row atoms , 2008 .

[51]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[52]  György G. Ferenczy Charges derived from distributed multipole series , 1991 .

[53]  K. Szalewicz,et al.  THREE-BODY CONTRIBUTION TO BINDING ENERGY OF SOLID ARGON AND ANALYSIS OF CRYSTAL STRUCTURE , 1997 .

[54]  Kenneth D Jordan,et al.  A second generation distributed point polarizable water model. , 2010, The Journal of chemical physics.

[55]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .

[56]  R. Wheatley,et al.  First-principles calculation of local atomic polarizabilities. , 2007, The journal of physical chemistry. A.

[57]  Sarah L. Price,et al.  A systematic intermolecular potential method applied to chlorine , 1990 .

[58]  Krzysztof Szalewicz,et al.  Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. , 2005, The Journal of chemical physics.

[59]  K. Szalewicz,et al.  Third-order interactions in symmetry-adapted perturbation theory. , 2006, The Journal of chemical physics.

[60]  A. Stone,et al.  Distributed polarizabilities obtained using a constrained density-fitting algorithm. , 2006, The Journal of chemical physics.

[61]  György G. Ferenczy,et al.  Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons , 1993 .

[62]  M. Kraft,et al.  A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. , 2012, Physical chemistry chemical physics : PCCP.

[63]  Sarah L Price,et al.  A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. , 2003, Journal of the American Chemical Society.

[64]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[65]  Jesse G. McDaniel,et al.  Robust, Transferable, and Physically Motivated Force Fields for Gas Adsorption in Functionalized Zeolitic Imidazolate Frameworks , 2012 .

[66]  R. van Harrevelt,et al.  An accurate analytic representation of the water pair potential. , 2008, Physical chemistry chemical physics : PCCP.

[67]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[68]  Robert M Parrish,et al.  Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition. , 2014, The Journal of chemical physics.

[69]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[70]  P. Jankowski,et al.  Ab initio potential energy surface and infrared spectra of H2-CO and D2-CO van der Waals complexes , 1998 .

[71]  Gregory J O Beran,et al.  Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. , 2012, Physical chemistry chemical physics : PCCP.

[72]  P. Jankowski,et al.  On the optimal choice of monomer geometry in calculations of intermolecular interaction energies: Rovibrational spectrum of Ar–HF from two- and three-dimensional potentials , 2000 .

[73]  K. Szalewicz,et al.  Complete ab initio three-body nonadditive potential in Monte Carlo simulations of vapor-liquid equilibria and pure phases of argon , 2001 .

[74]  G. Groenenboom,et al.  Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers. , 2006, The Journal of chemical physics.

[75]  M. Kraft,et al.  A First Principles Development of a General Anisotropic Potential for Polycyclic Aromatic Hydrocarbons. , 2010, Journal of chemical theory and computation.

[76]  Krzysztof Szalewicz,et al.  Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .

[77]  T. Heijmen,et al.  Ab initio potential-energy surface and rotationally inelastic integral cross sections of the Ar–CH4 complex , 1997 .

[78]  G. Jansen,et al.  A new potential energy surface for the water dimer obtained from separate fits of ab initio electrostatic, induction, dispersion and exchange energy contributions , 2006 .

[79]  A. Sum,et al.  Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. II. The mixture , 2002 .

[80]  Jesse G. McDaniel,et al.  First-principles many-body force fields from the gas phase to liquid: a "universal" approach. , 2014, The journal of physical chemistry. B.

[81]  K. Jordan,et al.  A distributed point polarizable force field for carbon dioxide , 2012, Theoretical Chemistry Accounts.

[82]  O Engkvist,et al.  Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. , 2000, Chemical reviews.

[83]  A. Stone,et al.  Distributed dispersion: A new approach , 2003 .

[84]  A. Sum,et al.  Ab initio pair potential and phase equilibria predictions for hydrogen chloride , 2003 .

[85]  K. Szalewicz,et al.  Spectra of Ar–CO2 from ab initio potential energy surfaces , 2000 .

[86]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[87]  K. Szalewicz,et al.  Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. , 2006, Acta crystallographica. Section D, Biological crystallography.

[88]  Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. , 2009, Physical chemistry chemical physics : PCCP.

[89]  M. Alderton,et al.  Distributed multipole analysis Methods and applications , 1985 .

[90]  Jesse G. McDaniel,et al.  First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4]. , 2014, The journal of physical chemistry letters.

[91]  Mark T. Oakley,et al.  First principles predictions of thermophysical properties of refrigerant mixtures. , 2011, The Journal of chemical physics.

[92]  K. Szalewicz,et al.  Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid , 2003 .

[93]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[94]  Kuang Yu,et al.  Many-body effects are essential in a physically motivated CO2 force field. , 2012, The Journal of chemical physics.

[95]  A. Stone,et al.  ANALYTICAL POTENTIALS FOR HF DIMER AND LARGER HF CLUSTERS FROM AB INITIO CALCULATIONS , 1998 .

[96]  R. Coase The Nature of the Firm , 1937 .

[97]  B. Rice,et al.  Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory. , 2007, Physical chemistry chemical physics : PCCP.

[98]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[99]  C. Chabalowski,et al.  AB INITIO INTERACTION POTENTIALS FOR SIMULATIONS OF DIMETHYLNITRAMINE SOLUTIONS IN SUPERCRITICAL CARBON DIOXIDE WITH COSOLVENTS , 1999 .

[100]  Water pair and three-body potential of spectroscopic quality from Ab initio calculations , 2000, Physical review letters.

[101]  A. Stone,et al.  Practical schemes for distributed polarizabilities , 1993 .

[102]  R. Wheatley,et al.  Calculating intermolecular potentials with SIMPER: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules , 2007 .

[103]  A. Stone,et al.  Localization methods for distributed polarizabilities , 1994 .

[104]  A. Sum,et al.  Computer simulation of acetonitrile and methanol with ab initio-based pair potentials , 2000 .

[105]  Anthony J Stone,et al.  Accurate Induction Energies for Small Organic Molecules:  1. Theory. , 2008, Journal of chemical theory and computation.

[106]  Krzysztof Szalewicz,et al.  Potential energy surface and second virial coefficient of methane-water from ab initio calculations. , 2005, The Journal of chemical physics.

[107]  A. Stone,et al.  Atom–atom potentials from ab initio calculations , 2007 .

[108]  Lori A Burns,et al.  Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. , 2014, The Journal of chemical physics.

[109]  M. Kraft,et al.  A transferable electrostatic model for intermolecular interactions between polycyclic aromatic hydrocarbons , 2011 .

[110]  K. Szalewicz,et al.  Asymptotic dispersion energies from distributed polarizabilities , 2013 .