Generalized Functions and Infinitesimals

It has been widely believed for half a century t hat there will never exist a nonlinear theory of generalized functions, in any mathematica l context. The aim of this text is to show the converse is the case and invite the reader to p artici ate in the debate and to examine the consequences at an unexpectedly elementary level. T h paradox appears as another instance of the historical controversy on the existence of i nfin tesimals in mathematics, which provides a connection with nonstandard analysis. This text i s he written version of a talk at the meeting of Nonstandard Analysis, Pisa, june 2006. Math. Subject Classification. primary: 46F30, secondary: 03H99, 35D05, 35D10, 35 L67, 35R05, 82D20, 83C35, 83C57, 83C75

[1]  J. Vickers,et al.  The use of generalized functions and distributions in general relativity , 2006, gr-qc/0603078.

[2]  Maarten V. de Hoop,et al.  Detection of Wave Front Set Perturbations via Correlation: Foundation for Wave-equation Tomography , 2001, math-ph/0104003.

[3]  M. Kunzinger,et al.  A Note on the Penrose junction conditions , 1998, gr-qc/9811007.

[4]  F. A. Medvedev Nonstandard analysis and the history of classical analysis , 1998 .

[5]  Michael Kunzinger,et al.  A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves , 1998, gr-qc/9806009.

[6]  R. Steinbauer Geodesics and geodesic deviation for impulsive gravitational waves , 1997, gr-qc/9710119.

[7]  R. Steinbauer The ultrarelativistic Reissner-Nordstrom field in the Colombeau algebra , 1996, gr-qc/9606059.

[8]  J. Colombeau,et al.  Numerical solutions of one-pressure models in multifluid flows , 1995 .

[9]  Hebe de Azevedo Biagioni,et al.  A Nonlinear Theory of Generalized Functions , 1990 .

[10]  J. Colombeau The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions , 1989 .

[11]  R. Geroch,et al.  Strings and other distributional sources in general relativity. , 1987, Physical review. D, Particles and fields.

[12]  W. Luxemburg What Is Nonstandard Analysis , 1973 .

[13]  Volker Boie Multiplication of distributions , 1998 .

[14]  R. F. Hoskins,et al.  Distributions, ultradistributions and other generalized functions , 1994 .

[15]  Rémy Baraille,et al.  Une version à pas fractionnaires du schéma de Godunov pour l'hydrodynamique , 1992 .

[16]  K. D. Stroyan,et al.  Introduction to the theory of infinitesimals , 1976 .

[17]  L. Schwartz Théorie des distributions , 1966 .