Adaptive least square control in discrete time of robotic arms

In this paper, the trajectory tracking problem of robotic arms in discrete time is considered. To solve this problem, an adaptive least square controller is proposed. The uniform stability of the tracking error and parameters error for the aforementioned controller is guaranteed by means of a Lyapunov-like analysis. The effectiveness of the proposed controller is verified by on-line simulations.

[1]  Minho Lee,et al.  A robust neural controller for underwater robot manipulators , 2000, IEEE Trans. Neural Networks Learn. Syst..

[2]  Fernando A. C. Gomide,et al.  Evolving fuzzy systems for pricing fixed income options , 2011, 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS).

[3]  Przemyslaw Kazienko,et al.  GED: the method for group evolution discovery in social networks , 2012, Social Network Analysis and Mining.

[4]  Plamen P. Angelov,et al.  PANFIS: A Novel Incremental Learning Machine , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[5]  Jau-Woei Perng,et al.  Limit-cycle analysis of dynamic fuzzy control systems , 2013, Soft Comput..

[6]  José de Jesús Rubio,et al.  Evolving intelligent algorithms for the modelling of brain and eye signals , 2014, Appl. Soft Comput..

[7]  Edwin Lughofer,et al.  On employing fuzzy modeling algorithms for the valuation of residential premises , 2011, Inf. Sci..

[8]  Igor Skrjanc,et al.  Globally stable direct fuzzy model reference adaptive control , 2003, Fuzzy Sets Syst..

[9]  Frank L. Lewis,et al.  Robot Manipulator Control: Theory and Practice , 2003 .

[10]  Emili Balaguer-Ballester,et al.  Identifying sources of non-stationary neural ensemble dynamics , 2013, BMC Neuroscience.

[11]  José de Jesús Rubio,et al.  Stable and optimal controls of a proton exchange membrane fuel cell , 2014, Int. J. Control.

[12]  Sarangapani Jagannathan,et al.  Control of a class of nonlinear discrete-time systems using multilayer neural networks , 2001, IEEE Trans. Neural Networks.

[13]  Andreas Rauh,et al.  Thermal behavior of high-temperature fuel cells: reliable parameter identification and interval-based sliding mode control , 2013, Soft Comput..

[14]  Edwin Lughofer,et al.  Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications , 2011, Studies in Fuzziness and Soft Computing.

[15]  Mohammad Farrokhi,et al.  Robust adaptive fuzzy control of twin rotor MIMO system , 2013, Soft Comput..

[16]  Jianqiang Yi,et al.  Direct adaptive type-2 fuzzy neural network control for a generic hypersonic flight vehicle , 2013, Soft Comput..

[17]  Edwin Lughofer,et al.  Single-pass active learning with conflict and ignorance , 2012, Evolving Systems.

[18]  Igor Skrjanc,et al.  Model-Reference Fuzzy Adaptive Control as a Framework for Nonlinear System Control , 2003, J. Intell. Robotic Syst..

[19]  Katarzyna Musial,et al.  Social networks on the Internet , 2012, World Wide Web.

[20]  Bogdan Trawinski,et al.  Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration , 2013, J. Univers. Comput. Sci..

[21]  Walmir M. Caminhas,et al.  A fast learning algorithm for evolving neo-fuzzy neuron , 2014, Appl. Soft Comput..

[22]  Wen Yu,et al.  Recurrent Neural Networks Training With Stable Bounding Ellipsoid Algorithm , 2009, IEEE Transactions on Neural Networks.

[23]  Mahardhika Pratama,et al.  GENEFIS: Toward an Effective Localist Network , 2014, IEEE Transactions on Fuzzy Systems.

[24]  Jose de Jesus Rubio,et al.  Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems , 2013 .

[25]  José de Jesús Rubio,et al.  State estimation in MIMO nonlinear systems subject to unknown deadzones using recurrent neural networks , 2013, Neural Computing and Applications.

[26]  Qinglai Wei,et al.  Multi-objective optimal control for a class of nonlinear time-delay systems via adaptive dynamic programming , 2013, Soft Comput..

[27]  Jose de Jesus Rubio,et al.  Modified optimal control with a backpropagation network for robotic arms , 2012 .

[28]  J. J. Rubio,et al.  Identification and control of class of non-linear systems with non-symmetric deadzone using recurrent neural networks , 2014 .

[29]  Fuchun Sun,et al.  Neural network-based adaptive controller design of robotic manipulators with an observer , 2001, IEEE Trans. Neural Networks.

[30]  Jose de Jesus Rubio,et al.  Modeling and Control of Wind Turbine , 2013 .

[31]  Rong-Jong Wai,et al.  Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network , 2004, IEEE Trans. Fuzzy Syst..

[32]  Bin Wang,et al.  A supervised Actor–Critic approach for adaptive cruise control , 2013, Soft Comput..

[33]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[34]  J. Humberto Pérez-Cruz,et al.  Evolving intelligent system for the modelling of nonlinear systems with dead-zone input , 2014, Appl. Soft Comput..

[35]  Plamen P. Angelov,et al.  Uniformly Stable Backpropagation Algorithm to Train a Feedforward Neural Network , 2011, IEEE Transactions on Neural Networks.

[36]  Fernando Bordignon,et al.  Uninorm based evolving neural networks and approximation capabilities , 2014, Neurocomputing.

[37]  Stefan Preitl,et al.  Novel Adaptive Charged System Search algorithm for optimal tuning of fuzzy controllers , 2014, Expert Syst. Appl..

[38]  Stefan Preitl,et al.  Convergence stabilization by parameter tuning in Robust Fixed Point Transformation based adaptive control of underactuated MIMO systems , 2010, 2010 International Joint Conference on Computational Cybernetics and Technical Informatics.

[39]  Esteban García-Cuesta,et al.  User modeling: Through statistical analysis and subspace learning , 2012, Expert Syst. Appl..

[40]  Euromoney Publications Plc Advanced Concepts and Applications , 2021 .