GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision

[1]  M. Ueda,et al.  Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias , 2022, Nature communications.

[2]  K. Dalby,et al.  The two non-visual arrestins engage ERK2 differently. , 2022, Journal of molecular biology.

[3]  P. Andrews,et al.  Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1 , 2021, Nature.

[4]  Gregory A Ross,et al.  OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. , 2021, Journal of chemical theory and computation.

[5]  Amanda Acosta-Ruiz,et al.  Mechanisms of differential desensitization of metabotropic glutamate receptors , 2021, Cell reports.

[6]  Nam Ki Lee,et al.  FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices , 2021, eLife.

[7]  Daniel S. Terry,et al.  Single-molecule FRET imaging of GPCR dimers in living cells , 2021, Nature Methods.

[8]  C. Altenbach,et al.  An eight amino acid segment controls oligomerization and preferred conformation of the two non-visual arrestins. , 2020, Journal of molecular biology.

[9]  Naomi R. Latorraca,et al.  How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling , 2020, Cell.

[10]  Daniel S. Terry,et al.  Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein , 2020, PLoS Comput. Biol..

[11]  J. Selent,et al.  Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling , 2020, Science Advances.

[12]  Hideaki E. Kato,et al.  Structure of the Neurotensin Receptor 1 in complex with β-arrestin 1 , 2020, Nature.

[13]  Naomi R. Latorraca,et al.  Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc , 2020, Nature.

[14]  Yong Zi Tan,et al.  Structure of an Endosomal Signaling GPCR–G Protein–β-arrestin Mega-Complex , 2019, Nature Structural & Molecular Biology.

[15]  K. Fuxe,et al.  Oligomeric Receptor Complexes and Their Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent a New Biological Principle for Integration of Signals in the CNS , 2019, Front. Mol. Neurosci..

[16]  E. Margeat,et al.  Studying GPCR conformational dynamics by single molecule fluorescence , 2019, Molecular and Cellular Endocrinology.

[17]  B. Kobilka,et al.  Mechanism of β2AR regulation by an intracellular positive allosteric modulator , 2019, Science.

[18]  T. Flock,et al.  Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation , 2019, Nature Communications.

[19]  V. Gurevich,et al.  GPCR Signaling Regulation: The Role of GRKs and Arrestins , 2019, Front. Pharmacol..

[20]  R. Lefkowitz,et al.  Small-Molecule Positive Allosteric Modulators of the β2-Adrenoceptor Isolated from DNA-Encoded Libraries , 2018, Molecular Pharmacology.

[21]  R. Lefkowitz,et al.  GPCR signaling: conformational activation of arrestins , 2018, Cell Research.

[22]  A. Lesk,et al.  Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation , 2018, Nature Structural & Molecular Biology.

[23]  Naomi R. Latorraca,et al.  Molecular mechanism of GPCR-mediated arrestin activation , 2018, Nature.

[24]  Paul A. Insel,et al.  G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? , 2018, Molecular Pharmacology.

[25]  A. Kruse,et al.  Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling , 2018, Proceedings of the National Academy of Sciences.

[26]  N. Lambert,et al.  Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells , 2018, The Journal of Biological Chemistry.

[27]  V. Uversky,et al.  Arrestins: structural disorder creates rich functionality , 2018, Protein & Cell.

[28]  Sudarshan Rajagopal,et al.  Biased signalling: from simple switches to allosteric microprocessors , 2018, Nature Reviews Drug Discovery.

[29]  P. Singh,et al.  Structural basis of arrestin-3 activation and signaling , 2017, Nature Communications.

[30]  Nam Ki Lee,et al.  Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study , 2017, Nature Methods.

[31]  P. Scheerer,et al.  Structural mechanism of arrestin activation. , 2017, Current opinion in structural biology.

[32]  A. Shukla,et al.  Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation , 2017, Molecular biology of the cell.

[33]  S. Shenoy,et al.  G Protein–Coupled Receptor Signaling Through &bgr;-Arrestin–Dependent Mechanisms , 2017, Journal of cardiovascular pharmacology.

[34]  J. Lamerdin,et al.  Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis , 2017, Proceedings of the National Academy of Sciences.

[35]  Stephanie J. Spielman,et al.  Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2 , 2017, The Journal of cell biology.

[36]  R. Rodriguiz,et al.  Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties , 2016, Proceedings of the National Academy of Sciences.

[37]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[38]  Ryan T. Strachan,et al.  Conformationally Selective RNA Aptamers Allosterically Modulate the β2-Adrenoceptor , 2016, Nature chemical biology.

[39]  S. Nuber,et al.  β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle , 2016, Nature.

[40]  Ryan L. Hayes,et al.  SMOG 2: A Versatile Software Package for Generating Structure-Based Models , 2016, PLoS Comput. Biol..

[41]  Daniel S. Terry,et al.  Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale , 2016, Nature Methods.

[42]  A. Shukla,et al.  Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function , 2015, Trends in Endocrinology & Metabolism.

[43]  J. Javitch,et al.  Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist‐Induced Arrestin Recruitment to Modified and Unmodified G Protein‐Coupled Receptors , 2015, Current protocols in pharmacology.

[44]  K. Neve,et al.  Mutation of Three Residues in the Third Intracellular Loop of the Dopamine D2 Receptor Creates an Internalization-defective Receptor* , 2014, The Journal of Biological Chemistry.

[45]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[46]  Daniel S. Terry,et al.  The bright future of single-molecule fluorescence imaging. , 2014, Current opinion in chemical biology.

[47]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[48]  Y. Zhuo,et al.  Identification of Receptor Binding-induced Conformational Changes in Non-visual Arrestins* , 2014, The Journal of Biological Chemistry.

[49]  R. Jaussi,et al.  Functional map of arrestin-1 at single amino acid resolution , 2014, Proceedings of the National Academy of Sciences.

[50]  Amelie Stein,et al.  Improvements to Robotics-Inspired Conformational Sampling in Rosetta , 2013, PloS one.

[51]  A. Kruse,et al.  Structure of active β-arrestin1 bound to a G protein-coupled receptor phosphopeptide , 2013, Nature.

[52]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[53]  Ryan T. Strachan,et al.  Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin , 2011, Science Signaling.

[54]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[55]  C. Sanders,et al.  Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. , 2010, Biochemistry.

[56]  Huan‐Xiang Zhou,et al.  Fundamental aspects of protein-protein association kinetics. , 2009, Chemical reviews.

[57]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[58]  T. Oas,et al.  The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. , 2007, The Journal of biological chemistry.

[59]  V. Gurevich,et al.  Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. , 2007, Journal of molecular biology.

[60]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[61]  C. Brenner,et al.  Nonvisual Arrestin Oligomerization and Cellular Localization Are Regulated by Inositol Hexakisphosphate Binding* , 2006, Journal of Biological Chemistry.

[62]  Vsevolod V Gurevich,et al.  Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[64]  Christoph Bräuchle,et al.  Pulsed interleaved excitation. , 2005, Biophysical journal.

[65]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[66]  R. Lefkowitz,et al.  Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[68]  M. Roth Phosphoinositides in constitutive membrane traffic. , 2004, Physiological reviews.

[69]  M. Matteis,et al.  PI-loting membrane traffic , 2004, Nature Cell Biology.

[70]  Feng Qin,et al.  Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. , 2004, Biophysical journal.

[71]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[72]  C. Chavkin,et al.  Conservation of the Phosphate-sensitive Elements in the Arrestin Family of Proteins* , 2002, The Journal of Biological Chemistry.

[73]  C. Brenner,et al.  Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. , 2002, Biochemistry.

[74]  P. Sigler,et al.  Crystal Structure of -Arrestin at 1.9 , 2001 .

[75]  D C Teller,et al.  Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). , 2001, Biochemistry.

[76]  A Volkmer,et al.  Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. , 2001, Journal of biotechnology.

[77]  P. Sigler,et al.  A Model for Arrestin’s Regulation: The 2.8 Å Crystal Structure of Visual Arrestin , 1999, Cell.

[78]  J. Falck,et al.  Arrestin function in G protein‐coupled receptor endocytosis requires phosphoinositide binding , 1999, The EMBO journal.

[79]  V. Gurevich The Selectivity of Visual Arrestin for Light-activated Phosphorhodopsin Is Controlled by Multiple Nonredundant Mechanisms* , 1998, The Journal of Biological Chemistry.

[80]  A. Auerbach,et al.  Maximum likelihood estimation of aggregated Markov processes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[81]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[82]  M. Hanley,et al.  Attenuation of agonist-induced desensitization of the rat substance P receptor by microinjection of inositol pentakis-and hexakisphosphates in Xenopus laevis oocytes. , 1994, Molecular pharmacology.

[83]  C. Aoki,et al.  Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. , 1992, The Journal of biological chemistry.

[84]  T. Kirchhausen,et al.  Clathrin domains involved in recognition by assembly protein AP-2. , 1991, The Journal of biological chemistry.

[85]  M. Caron,et al.  beta-Arrestin: a protein that regulates beta-adrenergic receptor function. , 1990, Science.

[86]  J. Javitch,et al.  Assays for detecting arrestin interaction with GPCRs. , 2021, Methods in cell biology.

[87]  R. Best,et al.  Accurate Transfer Efficiencies, Distance Distributions, and Ensembles of Unfolded and Intrinsically Disordered Proteins From Single-Molecule FRET. , 2018, Methods in enzymology.

[88]  K. Xiao,et al.  Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. , 2018, Cellular signalling.

[89]  B. Kobilka,et al.  Structure and dynamics of GPCR signaling complexes , 2017, Nature Structural & Molecular Biology.

[90]  V. Gurevich,et al.  Arrestins: Critical Players in Trafficking of Many GPCRs. , 2015, Progress in molecular biology and translational science.

[91]  Wen-Hsin Lee,et al.  Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody , 2013 .

[92]  Benjamin Schuler,et al.  Application of single molecule Förster resonance energy transfer to protein folding. , 2007, Methods in molecular biology.

[93]  M. Caron,et al.  Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. , 2000, The Journal of biological chemistry.

[94]  R. Gcgaccgagttgctcttgcccc,et al.  Two-Stage PCR Protocol Allowing Introduction of Multiple Mutations , Deletions and Insertions Using QuikChange Site-Directed Mutagenesis , 1999 .