A 3D general circulation model for Pluto and Triton with fixed volatile abundance and simplified surface forcing

Abstract We present a 3D general circulation model of Pluto and Triton’s atmospheres, which uses radiative–conductive–convective forcing. In both the Pluto and Triton models, an easterly (prograde) jet is present at the equator with a maximum magnitude of 10–12 m s−1 and 4 m s−1, respectively. Neither atmosphere shows any significant overturning circulation in the meridional and vertical directions. Rather, it is horizontal motions (mean circulation and transient waves) that transport heat meridionally at a magnitude of 1 and 3 × 107 W at Pluto’s autumn equinox and winter solstice, respectively (seasons referenced to the Northern Hemisphere). The meridional and dayside–nightside temperature contrast is small (⩽5 K). We find that the lack of vertical motion can be explained on Pluto by the strong temperature inversion in the lower atmosphere. The height of the Voyager 2 plumes on Triton can be explained by the dynamical properties of the lower atmosphere alone (i.e., strong wind shear) and does not require a thermally defined troposphere (i.e., temperature decreasing with height at the surface underlying a region of temperature increasing with height). The model results are compared with Pluto stellar occultation light curve data from 1988, 2002, 2006, and 2007 and Triton light curve data from 1997.

[1]  D. Strobel,et al.  Triton's upper atmosphere and ionosphere. , 1995 .

[2]  M. Davies,et al.  Triton's distorted atmosphere. , 1996, Science.

[3]  E. Lellouch,et al.  Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations , 2009, 0901.4882.

[4]  Jay M. Pasachoff,et al.  The Structure of Pluto's Atmosphere from the 2002 August 21 Stellar Occultation , 2005 .

[5]  T. Owen,et al.  Ices on the Surface of Triton , 1993, Science.

[6]  Bonnie J. Buratti,et al.  Modeling Pluto-Charon Mutual Events. 2; CCD Observations with the 60 in. Telescope at Palomar Mountain , 1995 .

[7]  A. McEwen,et al.  Surface and Airborne Evidence for Plumes and Winds on Triton , 1990, Science.

[8]  D. Chamberlain,et al.  A Numerical Method for Calculating Stellar Occultation Light Curves from an Arbitrary Atmospheric Model , 1997 .

[9]  P. Friberg,et al.  Discovery of carbon monoxide in the upper atmosphere of Pluto , 2011, 1104.3014.

[10]  Ingemar Holmström,et al.  On the vertical structure of the atmosphere , 1964 .

[11]  Eliot F. Young,et al.  VERTICAL STRUCTURE IN PLUTO'S ATMOSPHERE FROM THE 2006 JUNE 12 STELLAR OCCULTATION , 2008 .

[12]  James L. Elliot,et al.  Pluto's atmosphere , 1989 .

[13]  O. Franz,et al.  The Thermal Structure of Triton's Middle Atmosphere , 2000 .

[14]  Alan T. Tokunaga,et al.  Detection of Gaseous Methane on Pluto , 1997 .

[15]  J. Elliot,et al.  Analysis of Stellar Occultation Data. II. Inversion, with Application to Pluto and Triton , 2003 .

[16]  T. Owen,et al.  Spectroscopic Determination of the Phase Composition and Temperature of Nitrogen Ice on Triton , 1993, Science.

[17]  J. Holton,et al.  The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere , 1982 .

[18]  A. Zalucha,et al.  An Analysis of the Effect of Topography on the Martian Hadley Cells , 2010 .

[19]  J. Houghton The stratosphere and mesosphere , 1978 .

[20]  P. Hartogh,et al.  Influence of gravity waves on the Martian atmosphere: General circulation modeling , 2011 .

[21]  E. Lellouch,et al.  High resolution spectroscopy of Pluto’s atmosphere: detection of the 2.3 μm CH4 bands and evidence for carbon monoxide , 2011, 1104.4312.

[22]  Vadim Burwitz,et al.  Albedo Maps of Pluto and Improved Physical Parameters of the Pluto-Charon System , 1994 .

[23]  J. Peixoto,et al.  Physics of climate , 1992 .

[24]  D. Tholen,et al.  Further Analysis of Pluto-Charon Mutual Event Observations-1989 , 1990 .

[25]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[26]  J. Holton The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere , 1983 .

[27]  L A Young,et al.  Surface Ices and the Atmospheric Composition of Pluto , 1993, Science.

[28]  James L. Elliot,et al.  Analysis of stellar occultation data for planetary atmospheres. I - Model fitting, with application to Pluto , 1992 .

[29]  A. Ingersoll Dynamics of Triton's atmosphere , 1990, Nature.

[30]  A. Ingersoll,et al.  Triton's Plumes: The Dust Devil Hypothesis , 1990, Science.

[31]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[32]  Xun Zhu,et al.  An analysis of Pluto occultation light curves using an atmospheric radiative–conductive model , 2011 .

[33]  E. Lellouch,et al.  Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions , 2010, 1003.2866.

[34]  Jonathan I. Lunine,et al.  Evidence for a molecule heavier than methane in the atmosphere of Pluto , 1989, Nature.

[35]  R. H. Brown,et al.  Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.

[36]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Neptune and Triton , 1989, Science.

[37]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[38]  P. Thomas The Shape of Triton from Limb Profiles , 2000 .

[39]  Donald W. McCarthy,et al.  WAVES IN PLUTO'S UPPER ATMOSPHERE , 2008 .

[40]  William B. Hubbard,et al.  Mirages and the Nature of Pluto's Atmosphere , 1994 .

[41]  William B. Hubbard,et al.  Nonisothermal Pluto atmosphere models , 1990 .

[42]  James L. Elliot,et al.  Changes in Pluto’s Atmosphere: 1988-2006 , 2007 .

[43]  David A. Paige,et al.  Seasonal Nitrogen Cycles on Pluto , 1996 .

[44]  L. A. Young,et al.  Modeling 3-D global atmosphere-surface interactions on contemporary Pluto , 2011 .

[45]  J. Pasachoff,et al.  Global warming on Triton , 1998, Nature.

[46]  T. Matsuno A Quasi One-Dimensional Model of the Middle Atmosphere Circulation Interacting with Internal Gravity Waves , 1982 .

[47]  J. Holton,et al.  A Theory of the Quasi-Biennial Oscillation , 1968 .

[48]  S. Kieffer,et al.  Triton's plumes: Discovery, characteristics, and models , 1995 .

[49]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[50]  C. Leovy Simple Models of Thermally Driven Mesopheric Circulation , 1964 .

[51]  Amanda A. S. Gulbis,et al.  Comparison of a simple 2‐D Pluto general circulation model with stellar occultation light curves and implications for atmospheric circulation , 2012 .

[52]  A. Zalucha The effect of topography on the Martian atmospheric circulation and determining Pluto's atmospheric thermal structure from stellar occultations , 2010 .

[53]  M. Schultheis,et al.  The recent expansion of Pluto ’ s atmosphere , 2003 .

[54]  E. W. Dunham,et al.  The recent expansion of Pluto's atmosphere , 2003, Nature.

[55]  MIT,et al.  Buoyancy waves in Pluto’s high atmosphere: Implications for stellar occultations , 2009 .

[56]  Leslie A. Young Volatile transport on inhomogeneous surfaces: I – Analytic expressions, with application to Pluto’s day , 2012 .

[57]  D. Paige,et al.  A thermal model for the seasonal nitrogen cycle on Triton , 1992 .

[58]  J. Pollack,et al.  Lower atmospheric structure and surface-atmosphere interactions on Triton. , 1995 .

[59]  F. Forget,et al.  Evolution of the N2 frost distribution on Triton during thousands of terrestrial years , 2011 .

[60]  M. Alexander,et al.  Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM) , 2012 .

[61]  Xun Zhu,et al.  An investigation of Pluto’s troposphere using stellar occultation light curves and an atmospheric radiative–conductive–convective model , 2011 .

[62]  Richard P. Binzel,et al.  A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves , 1994 .

[63]  B. Sandel,et al.  CH4 AND HAZE IN TRITON'S LOWER ATMOSPHERE , 1991 .