HelSweeper: Screw-sweeps of canal surfaces

A tube is a solid bounded by the union of a one-parameter family of circles that may be decomposed into canal-surfaces and planar disks or annuli. A screw-sweep is the region swept by a shape during a screw motion. HelSweeper computes the boundary of a screw-sweep of an arbitrary union of tubes and polyhedra. To do so, it generates a superset of faces, splits them at their intersections, and selects the face portions that form the desired boundary. The novelty of the proposed approach lies in the fact that the faces contributed to this superset by a tube are each a screw-sweeps of a rigid curve (generator), which is the locus of grazing points, and that each grazing point is formulated as the intersection of a circle of the tube with a corresponding screw-plane. Hence, each such face is a one-parameter family of helices, each being the screw-sweep of a grazing point.

[1]  Aichi Chien,et al.  Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms , 2008, Medical & Biological Engineering & Computing.

[2]  Abderrahmane Kheddar,et al.  CONTACT: arbitrary in-between motions for collision detection , 2001, Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No.01TH8591).

[3]  Jarek Rossignac,et al.  Computing and visualizing pose-interpolating 3D motions , 2001, Comput. Aided Des..

[4]  Christian Smith,et al.  Robot manipulators , 2009, IEEE Robotics & Automation Magazine.

[5]  Samuel R. Buss,et al.  Collision detection with relative screw motion , 2005, The Visual Computer.

[6]  Robert B. Tilove,et al.  Set Membership Classification: A Unified Approach to Geometric Intersection Problems , 1980, IEEE Transactions on Computers.

[7]  Jarek Rossignac,et al.  Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM) , 2008, Medical & Biological Engineering & Computing.

[8]  Helmut Pottmann,et al.  Computing Rational Parametrizations of Canal Surfaces , 1997, J. Symb. Comput..

[9]  E. Ramis,et al.  Applications de l'analyse a la géométrie , 1981 .

[10]  Karim Abdel-Malek,et al.  Approximate swept volumes of NURBS surfaces or solids , 2005, Comput. Aided Geom. Des..

[11]  Dinesh Manocha,et al.  Fast swept volume approximation of complex polyhedral models , 2004, Comput. Aided Des..

[12]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[13]  Kenneth I. Joy,et al.  Swept Volumes: Fundation, Perspectives, and Applications , 2006, Int. J. Shape Model..

[14]  Jarek Rossignac,et al.  3D ball skinning using PDEs for generation of smooth tubular surfaces , 2010, Comput. Aided Des..

[15]  Pappu L. N. Murthy,et al.  Winter Annual Meeting of ASME , 1992 .

[16]  Capital Markets Law and Compliance: The Implications of MiFID: Systems and controls , 2008 .

[17]  F. Litvin,et al.  Swept Volume Determination and Interference Detection for Moving 3-D Solids , 1991 .

[18]  Bernard Roth,et al.  An Extension of Screw Theory , 1981 .

[19]  Martin Herman,et al.  Fast, three-dimensional, collision-free motion planning , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[20]  M. Leu,et al.  Analysis of Swept Volume via Lie Groups and Differential Equations , 1992 .

[21]  Debasish Dutta,et al.  On the geometry of Dupin cyclides , 1989, The Visual Computer.

[22]  Eyyup Aras,et al.  Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres , 2009, Comput. Aided Des..

[23]  C. Barus A treatise on the theory of screws , 1998 .

[24]  Klaus Weinert,et al.  Swept volume generation for the simulation of machining processes , 2004 .

[25]  Jarek Rossignac,et al.  Active zones in CSG for accelerating boundary evaluation, redundancy elimination, interference detection, and shading algorithms , 1988, TOGS.

[26]  Vadim Shapiro,et al.  UNSWEEP: formulation and computational properties , 1997, SMA '97.

[27]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[28]  Rida T. Farouki,et al.  Approximation of rolling-ball blends for free-form parametric surfaces , 1996, Comput. Aided Des..

[29]  Jaroslaw R. Rossignac,et al.  Screw motions for the animation and analysis of mechanical assemblies , 2001 .

[30]  Ming C. Leu,et al.  Trimming swept volumes , 1999, Comput. Aided Des..

[31]  Ignacio Llamas,et al.  Bender: a virtual ribbon for deforming 3D shapes in biomedical and styling applications , 2005, SPM '05.

[32]  Nicholas M. Patrikalakis,et al.  Analysis and applications of pipe surfaces , 1998, Comput. Aided Geom. Des..

[33]  Sung Yong Shin,et al.  Three-Dimensional Topological Sweep for Computing Rotational Swept Volumes of Polyhedral Objects , 2000, Int. J. Comput. Geom. Appl..

[34]  Ignacio Llamas,et al.  Twister: a space-warp operator for the two-handed editing of 3D shapes , 2003, ACM Trans. Graph..

[35]  K. K. Wang,et al.  Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.

[36]  Jarek Rossignac,et al.  Boundary of the volume swept by a free-form solid in screw motion , 2007, Comput. Aided Des..

[37]  Gaspard Monge,et al.  Application de l'analyse à la géométrie , 1850 .

[38]  S. H. Park,et al.  Geometric Representation of Translational Swept Volumes and its Applications , 1986 .

[39]  Jarek Rossignac,et al.  ScrewBender: Smoothing Piecewise Helical Motions , 2008, IEEE Computer Graphics and Applications.

[40]  John C. J. Chiou,et al.  Accurate tool position for five-axis ruled surface machining by swept envelope approach , 2004, Comput. Aided Des..

[41]  Stephen N. Spencer,et al.  Proceedings of the 25th Spring Conference on Computer Graphics , 2007, SCCG 2011.