Transport and dynamical properties for a bouncing ball model with regular and stochastic perturbations

Some statistical properties related to the diffusion in energy for an ensemble of classical particles in a bouncing ball model are studied. The particles are confined to bounce between two rigid walls. One of them is fixed while the other oscillates. The dynamics is described by a two dimensional nonlinear map for the velocity of the particle and time at the instant of the collision. Two different types of change of momentum are considered: (i) periodic due to a sine function and; (ii) stochastic. For elastic collisions case (i) leads to finite diffusion in energy while (ii) produces unlimited diffusion. On the other hand, inelastic collisions yield either (i) and (ii) to have limited diffusion. Scaling arguments are used to investigate some properties of the transport coefficient in the chaotic low energy region. Scaling exponents are also obtained for both conservative and dissipative case for cases (i) and (ii). We show that the parameter space has complicated structures either in Lyapunov as well as period coordinates. When stochasticity is introduced in the dynamics, we observed the destruction of the parameter space structures.

[1]  E. Leonel,et al.  A simplified Fermi Accelerator Model under quadratic frictional force , 2008 .

[2]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Richard M. Everson,et al.  Chaotic dynamics of a bouncing ball , 1986 .

[5]  E. Leonel,et al.  Scaling investigation of Fermi acceleration on a dissipative bouncer model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[7]  L. Pustyl'nikov,et al.  On Ulam's problem , 1983 .

[8]  K. Berenhaut,et al.  Applied Mathematical Sciences , 2012 .

[9]  M. Emiliano Mathematical Problems in Engineering , 2014 .

[10]  V. Constantoudis,et al.  Rare events and their impact on velocity diffusion in a stochastic Fermi-Ulam model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Grebogi,et al.  Multistability and the control of complexity. , 1997, Chaos.

[12]  Peter Schmelcher,et al.  Phase Space Interpretation of Exponential Fermi Acceleration , 2011 .

[13]  William H. Press,et al.  Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .

[14]  E. Leonel,et al.  Escape of particles in a time-dependent potential well. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Albert C. J. Luo,et al.  An Unsymmetrical Motion in a Horizontal Impact Oscillator , 2002 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  E. Leonel,et al.  Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach , 2012 .

[18]  R. Radner PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .

[19]  Luna-Acosta Regular and chaotic dynamics of the damped Fermi accelerator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[20]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[21]  M. Robnik,et al.  Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards , 2011 .

[22]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[23]  V. Constantoudis,et al.  Hyperacceleration in a stochastic Fermi-Ulam model. , 2006, Physical review letters.

[24]  Jörg Wallaschek,et al.  A system for powder transport based on piezoelectrically excited ultrasonic progressive waves , 2005 .

[25]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[26]  Edson D. Leonel,et al.  Parameter space for a dissipative Fermi–Ulam model , 2011 .

[27]  O. F. de Alcantara Bonfim,et al.  Fermi Acceleration in a periodically Driven Fermi-Ulam Model , 2011, Int. J. Bifurc. Chaos.

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  Iberê L. Caldas,et al.  Periodic window arising in the parameter space of an impact oscillator , 2010 .

[30]  A. Luo,et al.  Switching Mechanism and Complex Motions in an Extended Fermi-Acceleration Oscillator , 2010 .

[31]  Albert C. J. Luo,et al.  The dynamics of a bouncing ball with a sinusoidally vibrating table revisited , 1996 .

[32]  Transport of particles by surface waves: a modification of the classical bouncer model , 2008 .

[33]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[34]  R. Pethig,et al.  Electromanipulation and separation of cells using travelling electric fields , 1996 .

[35]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[36]  E. Leonel Breaking down the Fermi acceleration with inelastic collisions , 2007, 0903.1838.

[37]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[38]  Alexander Loskutov,et al.  Time-dependent focusing billiards and macroscopic realization of Maxwell's Demon , 2010 .

[39]  R. H. Cohen,et al.  Fermi acceleration revisited , 1980 .

[40]  E. Leonel,et al.  Non-uniform drag force on the Fermi accelerator model , 2012 .

[41]  Enrico Fermi,et al.  On the Origin of the Cosmic Radiation , 1949 .

[42]  Michael A. Lieberman,et al.  Stochastic and Adiabatic Behavior of Particles Accelerated by Periodic Forces , 1972 .

[43]  G. Papamikos,et al.  Statistical properties of 1D time-dependent Hamiltonian systems: from the adiabatic limit to the parametrically kicked systems , 2011 .

[44]  Grebogi,et al.  Map with more than 100 coexisting low-period periodic attractors. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  J. Neyman,et al.  Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , 1963 .

[46]  D. Dolgopyat,et al.  Dynamics of some piecewise smooth Fermi-Ulam models. , 2011, Chaos.