Transport and dynamical properties for a bouncing ball model with regular and stochastic perturbations
暂无分享,去创建一个
[1] E. Leonel,et al. A simplified Fermi Accelerator Model under quadratic frictional force , 2008 .
[2] P. J. Holmes. The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .
[3] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[4] Richard M. Everson,et al. Chaotic dynamics of a bouncing ball , 1986 .
[5] E. Leonel,et al. Scaling investigation of Fermi acceleration on a dissipative bouncer model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[7] L. Pustyl'nikov,et al. On Ulam's problem , 1983 .
[8] K. Berenhaut,et al. Applied Mathematical Sciences , 2012 .
[9] M. Emiliano. Mathematical Problems in Engineering , 2014 .
[10] V. Constantoudis,et al. Rare events and their impact on velocity diffusion in a stochastic Fermi-Ulam model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] C. Grebogi,et al. Multistability and the control of complexity. , 1997, Chaos.
[12] Peter Schmelcher,et al. Phase Space Interpretation of Exponential Fermi Acceleration , 2011 .
[13] William H. Press,et al. Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .
[14] E. Leonel,et al. Escape of particles in a time-dependent potential well. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Albert C. J. Luo,et al. An Unsymmetrical Motion in a Horizontal Impact Oscillator , 2002 .
[16] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[17] E. Leonel,et al. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach , 2012 .
[18] R. Radner. PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .
[19] Luna-Acosta. Regular and chaotic dynamics of the damped Fermi accelerator. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[20] G. Zaslavsky. The simplest case of a strange attractor , 1978 .
[21] M. Robnik,et al. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards , 2011 .
[22] J. Gallas,et al. Structure of the parameter space of the Hénon map. , 1993, Physical review letters.
[23] V. Constantoudis,et al. Hyperacceleration in a stochastic Fermi-Ulam model. , 2006, Physical review letters.
[24] Jörg Wallaschek,et al. A system for powder transport based on piezoelectrically excited ultrasonic progressive waves , 2005 .
[25] A. Lichtenberg,et al. Regular and Chaotic Dynamics , 1992 .
[26] Edson D. Leonel,et al. Parameter space for a dissipative Fermi–Ulam model , 2011 .
[27] O. F. de Alcantara Bonfim,et al. Fermi Acceleration in a periodically Driven Fermi-Ulam Model , 2011, Int. J. Bifurc. Chaos.
[28] Andrew G. Glen,et al. APPL , 2001 .
[29] Iberê L. Caldas,et al. Periodic window arising in the parameter space of an impact oscillator , 2010 .
[30] A. Luo,et al. Switching Mechanism and Complex Motions in an Extended Fermi-Acceleration Oscillator , 2010 .
[31] Albert C. J. Luo,et al. The dynamics of a bouncing ball with a sinusoidally vibrating table revisited , 1996 .
[32] Transport of particles by surface waves: a modification of the classical bouncer model , 2008 .
[33] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[34] R. Pethig,et al. Electromanipulation and separation of cells using travelling electric fields , 1996 .
[35] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[36] E. Leonel. Breaking down the Fermi acceleration with inelastic collisions , 2007, 0903.1838.
[37] Jason A. C. Gallas,et al. Dissecting shrimps: results for some one-dimensional physical models , 1994 .
[38] Alexander Loskutov,et al. Time-dependent focusing billiards and macroscopic realization of Maxwell's Demon , 2010 .
[39] R. H. Cohen,et al. Fermi acceleration revisited , 1980 .
[40] E. Leonel,et al. Non-uniform drag force on the Fermi accelerator model , 2012 .
[41] Enrico Fermi,et al. On the Origin of the Cosmic Radiation , 1949 .
[42] Michael A. Lieberman,et al. Stochastic and Adiabatic Behavior of Particles Accelerated by Periodic Forces , 1972 .
[43] G. Papamikos,et al. Statistical properties of 1D time-dependent Hamiltonian systems: from the adiabatic limit to the parametrically kicked systems , 2011 .
[44] Grebogi,et al. Map with more than 100 coexisting low-period periodic attractors. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[45] J. Neyman,et al. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , 1963 .
[46] D. Dolgopyat,et al. Dynamics of some piecewise smooth Fermi-Ulam models. , 2011, Chaos.