Tverberg’s Theorem at 50: Extensions and Counterexamples

We describe how a powerful new “constraint method” yields many different extensions of the topological version of Tverberg’s 1966 Theorem in the prime power case— and how the same method also was instrumental in the recent spectacular construction of counterexamples for the general case. © 2016. All rights reserved.

[1]  Murad Ozaydin,et al.  Equivariant Maps for the Symmetric Group , 1987 .

[2]  Pavle V. M. Blagojevi'c,et al.  Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.

[3]  Uli Wagner,et al.  Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.

[4]  Florian Frick,et al.  Barycenters of polytope skeleta and counterexamples to the Topological Tverberg Conjecture, via constraints , 2015, Journal of the European Mathematical Society.

[5]  I. James,et al.  Singularities * , 2008 .

[6]  Florian Frick,et al.  Tverberg plus constraints , 2014, 1401.0690.

[7]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[8]  Pavle V. M. Blagojevi'c,et al.  Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story , 2016, 1605.07321.

[9]  Günter M. Ziegler 3N Colored Points in a Plane , 2011 .

[10]  Imre Bárány,et al.  On a Topological Generalization of a Theorem of Tverberg , 1981 .

[11]  Rolf Schneider,et al.  Problems in Geometric Convexity , 1979 .

[12]  Florian Frick,et al.  Counterexamples to the topological Tverberg conjecture , 2015 .

[13]  Uli Wagner,et al.  Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.

[14]  Roman Karasev,et al.  Dual theorems on central points and their generalizations , 2008 .

[15]  Wolfgang Mulzer,et al.  Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2011, Discrete & Computational Geometry.