A reversibly tunable colloidal photonic crystal via the infiltrated solvent liquid–solid phase transition

[1]  H. Takezoe,et al.  Self‐Assembled Silica Photonic Crystal as a Liquid‐Crystal Alignment Layer and its Electro‐optic Applications in Fabry–Perot Cavity Structures , 2004 .

[2]  Haiping Yu,et al.  Optically switchable liquid crystal photonic structures. , 2004, Journal of the American Chemical Society.

[3]  Tomiki Ikeda,et al.  Optically Switchable Bragg Reflectors , 2004 .

[4]  Paul V Braun,et al.  Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  Anjal C. Sharma,et al.  A general photonic crystal sensing motif: creatinine in bodily fluids. , 2004, Journal of the American Chemical Society.

[6]  S. Asher,et al.  Nanogel nanosecond photonic crystal optical switching. , 2004, Journal of the American Chemical Society.

[7]  J. I. Dijkhuis,et al.  Ultrafast optical switching in three-dimensional photonic crystals. , 2003, Physical review letters.

[8]  Younan Xia,et al.  Photonic Papers and Inks: Color Writing with Colorless Materials , 2003 .

[9]  John Ballato,et al.  Photonic Crystal Composites with Reversible High‐Frequency Stop Band Shifts , 2003 .

[10]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[11]  S. Asher,et al.  Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals. , 2002, Journal of the American Chemical Society.

[12]  Akira Fujishima,et al.  Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. , 2002, Journal of the American Chemical Society.

[13]  W. Vos,et al.  Ultrafast switching of photonic density of states in photonic crystals , 2002 .

[14]  Justin D. Debord,et al.  Color-Tunable Colloidal Crystals from Soft Hydrogel Nanoparticles , 2002 .

[15]  Masanori Ozaki,et al.  Electric Field Tuning of the Stop Band in a Liquid‐Crystal‐Infiltrated Polymer Inverse Opal , 2002 .

[16]  A. Stein,et al.  Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications , 2001 .

[17]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[18]  Ekmel Ozbay,et al.  EXPERIMENTAL DEMONSTRATION OF PHOTONIC CRYSTAL BASED WAVEGUIDES , 1999 .

[19]  C. López,et al.  Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO(2) Spheres by Sintering. , 1998, Advanced materials.

[20]  J. P. Callan,et al.  GaAs under Intense Ultrafast Excitation: Response of the Dielectric Function , 1998 .

[21]  Shanhui Fan,et al.  Erratum: Photonic crystals: putting a new twist on light , 1997, Nature.

[22]  O. Z. Karimov,et al.  EXISTENCE OF A PHOTONIC PSEUDOGAP FOR VISIBLE LIGHT IN SYNTHETIC OPALS , 1997 .

[23]  Miguel Holgado,et al.  3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure , 1997 .

[24]  A. M. Kapitonov,et al.  Photonic band gap in the visible range in a three-dimensional solid state lattice , 1996 .

[25]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[26]  Bowden,et al.  Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. , 1994, Physical review letters.

[27]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[28]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[29]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .