The big picture of Raman scattering in carbon nanotubes

[1]  M. Shim,et al.  Fano lineshape and phonon softening in single isolated metallic carbon nanotubes. , 2007, Physical review letters.

[2]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[3]  H. Son,et al.  Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy , 2007 .

[4]  H. Son,et al.  Raman Spectra Variation of Partially Suspended Individual Single-Walled Carbon Nanotubes , 2007 .

[5]  M. Dresselhaus,et al.  Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nanotubes , 2006 .

[6]  P. Lambin,et al.  Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes , 2006 .

[7]  M. Dresselhaus,et al.  Strain-induced interference effects on the resonance Raman cross section of carbon nanotubes. , 2005, Physical review letters.

[8]  J. Robertson,et al.  Phonon linewidths and electron-phonon coupling in graphite and nanotubes , 2005, cond-mat/0508700.

[9]  M. Dresselhaus,et al.  Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes. , 2005, Nano letters.

[10]  J. Maultzsch,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005, cond-mat/0505150.

[11]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[12]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[13]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[15]  M. Dresselhaus,et al.  Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy , 2004 .

[16]  V. Popov Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model , 2004 .

[17]  M. Dresselhaus,et al.  The concept of cutting lines in carbon nanotube science. , 2003, Journal of nanoscience and nanotechnology.

[18]  M. Dresselhaus,et al.  Double resonance Raman spectroscopy of single-wall carbon nanotubes , 2003 .

[19]  M. Dresselhaus,et al.  Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes , 2003 .

[20]  M. Dresselhaus,et al.  Phonon trigonal warping effect in graphite and carbon nanotubes. , 2003, Physical review letters.

[21]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[22]  S. Louie,et al.  Electronic properties of bromine-doped carbon nanotubes , 2002 .

[23]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[24]  Bennett B. Goldberg,et al.  G-band resonant Raman study of 62 isolated single-wall carbon nanotubes , 2002 .

[25]  Charles M. Lieber,et al.  Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra , 2002 .

[26]  J. Hafner,et al.  Electronic transition energy E ii for an isolated ( n , m ) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio , 2001 .

[27]  S. Reich,et al.  The Pressure Dependence of the High‐Energy Raman Modes in Empty and Filled Multiwalled Carbon Nanotubes , 2001 .

[28]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[29]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[30]  Cheng,et al.  Polarized raman study of single-wall semiconducting carbon nanotubes , 2000, Physical review letters.

[31]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[32]  A. M. Rao,et al.  Resonant Raman Effect in Single-wall Carbon Nanotubes , 1998 .

[33]  A. M. Rao,et al.  Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes , 1998 .

[34]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[35]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[36]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[37]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[38]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[39]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[40]  R. Leite,et al.  Enhancement of Raman Cross Section in CdS due to Resonant Absorption , 1966 .