On the choice of Kernel for signal interpolation on the sphere using reproducing kernel Hilbert spaces

In this paper, we present a mathematical framework for the interpolation (approximation) of signals defined on the sphere using the notion of reproducing-kernel Hilbert spaces (RKHS) and evaluate the performance of different isotropic kernels. Using the reproducing kernel and kernel inclusion properties of RKHS, we first present the formulation for the interpolation (approximation) of a signal on the sphere from its measurements. Later, we analyse the performance of different isotropic univariate kernels: Abel Poisson kernel, Von Mises-Fisher kernel, Legendre generating function and Lebedev kernel, by evaluating the signal interpolation accuracy.

[1]  Scott E. Umbaugh,et al.  Computer Vision and Image Processing: A Practical Approach Using Cviptools with Cdrom , 1997 .

[2]  M. Golitschek,et al.  Interpolation by Polynomials and Radial Basis Functions on Spheres , 2000 .

[3]  Mahadevan Ganesh,et al.  Matrix-free Interpolation on the Sphere , 2006, SIAM J. Numer. Anal..

[4]  Rodney A. Kennedy,et al.  Classification and construction of closed-form kernels for signal representation on the 2-sphere , 2013, Optics & Photonics - Optical Engineering + Applications.

[5]  Benjamin D. Wandelt,et al.  FAST AND OPTIMAL COSMIC MICROWAVE BACKGROUND LENSING USING STATISTICAL INTERPOLATION ON THE SPHERE , 2010 .

[6]  Gregory E. Fasshauer,et al.  Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.

[7]  Rodney A. Kennedy,et al.  An Optimal-Dimensionality Sampling Scheme on the Sphere With Fast Spherical Harmonic Transforms , 2014, IEEE Transactions on Signal Processing.

[8]  Robert J. Renka,et al.  Interpolation of data on the surface of a sphere , 1984, TOMS.

[9]  Mohamed Hedi Bedoui,et al.  EEG potential mapping by 3D interpolation methods , 2014, 2014 International Conference on Multimedia Computing and Systems (ICMCS).

[10]  R. Kennedy,et al.  Hilbert Space Methods in Signal Processing , 2013 .

[11]  Yuan Xu Polynomial Interpolation on the Unit Sphere , 2003, SIAM J. Numer. Anal..

[12]  F. Simons,et al.  Parametrizing surface wave tomographic models with harmonic spherical splines , 2008 .

[13]  Xue-Zhang Liang,et al.  On a Hermite interpolation on the sphere , 2011 .

[14]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[15]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .

[16]  Gregory E. Fasshauer,et al.  Hermite interpolation with radial basis functions on spheres , 1999, Adv. Comput. Math..

[17]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[18]  Yuan Xu,et al.  Polynomial interpolation on the unit sphere II , 2007, Adv. Comput. Math..

[19]  Ian H. Sloan,et al.  How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..

[20]  Paul Wessel,et al.  Interpolation using a generalized Green's function for a spherical surface spline in tension , 2008 .

[21]  Jianjun Cui,et al.  Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..

[22]  Willi Freeden,et al.  Spherical spline interpolation—basic theory and computational aspects , 1984 .