Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.

[1]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[2]  Paul J. Atzberger,et al.  Hydrodynamic flows on curved surfaces: Spectral numerical methods for radial manifold shapes , 2018, J. Comput. Phys..

[3]  S. Ishihara,et al.  From cells to tissue : A continuum model for epithelial mechanics , 2016 .

[4]  Thomas-Peter Fries,et al.  Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.

[5]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[6]  Basile Audoly,et al.  Furrow constriction in animal cell cytokinesis. , 2014, Biophysical journal.

[7]  M. Arroyo,et al.  Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.

[8]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Yiying Tong,et al.  Discrete Connection and Covariant Derivative for Vector Field Analysis and Design , 2016, ACM Trans. Graph..

[10]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[11]  Mohamed Daoud,et al.  Soft Matter Physics , 1999 .

[12]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[13]  D. Arnold Finite Element Exterior Calculus , 2018 .

[14]  Axel Voigt,et al.  The Interplay of Curvature and Vortices in Flow on Curved Surfaces , 2014, Multiscale Model. Simul..

[15]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[16]  R. Sauer,et al.  Irreversible thermodynamics of curved lipid membranes. , 2017, Physical review. E.

[17]  Ivo F. Sbalzarini,et al.  Self-organized shape dynamics of active surfaces , 2018, Proceedings of the National Academy of Sciences.

[18]  Axel Voigt,et al.  Hydrodynamic interactions in polar liquid crystals on evolving surfaces , 2018, Physical Review Fluids.

[19]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[20]  Hartmut Löwen,et al.  Nematic liquid crystals on curved surfaces: a thin film limit , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  G. Salbreux,et al.  Hydrodynamics of cellular cortical flows and the formation of contractile rings. , 2009, Physical review letters.

[22]  G. Salbreux,et al.  Active dynamics of tissue shear flow , 2016 .

[23]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[24]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[25]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[26]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[27]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[28]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[29]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[30]  Hartmut Löwen,et al.  Active crystals on a sphere. , 2018, Physical review. E.

[31]  Roger A. Sauer,et al.  The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity , 2018, International Journal of Solids and Structures.

[32]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[33]  PascucciValerio,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013 .

[34]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[35]  T. Lubensky,et al.  Orientational order and vesicle shape , 1992 .

[36]  Mathieu Desbrun,et al.  Vector field processing on triangle meshes , 2015, SIGGRAPH Asia Courses.

[37]  Marc Levoy,et al.  Texture synthesis over arbitrary manifold surfaces , 2001, SIGGRAPH.

[38]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[39]  John Milnor,et al.  Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed Point Theorem , 1978 .

[40]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[41]  G. Salbreux,et al.  Mechanics of active surfaces. , 2017, Physical review. E.

[42]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[43]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[44]  Tim Sanchez,et al.  Topology and dynamics of active nematic vesicles , 2014, Science.

[45]  Peter Hansbo,et al.  Analysis of finite element methods for vector Laplacians on surfaces , 2016, IMA Journal of Numerical Analysis.

[46]  T. Koslowski,et al.  Shape Dynamics , 2011, 1301.1933.

[47]  P. Atzberger,et al.  Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. , 2016, Soft matter.

[48]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[49]  Axel Voigt,et al.  Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics , 2016, J. Nonlinear Sci..

[50]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[51]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[52]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[53]  Marino Arroyo,et al.  Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes [corrected]. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Amin Doostmohammadi,et al.  Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells. , 2018, Physical review letters.

[55]  Axel Voigt,et al.  Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation , 2016, 1611.04392.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  R. Skalak,et al.  Surface flow of viscoelastic membranes in viscous fluids , 1982 .

[58]  Mobility Measurements Probe Conformational Changes in Membrane Proteins due to Tension. , 2015, Physical review letters.

[59]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[60]  Roger A. Sauer,et al.  A stabilized finite element formulation for liquid shells and its application to lipid bilayers , 2016, J. Comput. Phys..

[61]  Greg Turk,et al.  Texture synthesis on surfaces , 2001, SIGGRAPH.

[62]  Jörn Dunkel,et al.  Anomalous Chained Turbulence in Actively Driven Flows on Spheres. , 2017, Physical review letters.

[63]  Benoit Ladoux,et al.  Active superelasticity in three-dimensional epithelia of controlled shape , 2018, Nature.

[64]  Axel Voigt,et al.  A finite element approach for vector- and tensor-valued surface PDEs , 2018, J. Comput. Phys..

[65]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[66]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.