First-principles calculations of LaNi5−xSnxHy intermetallics and intermediate phase

[1]  T. Gao,et al.  Electronic structure and site occupation for the intermediate phase of LaNi4.5Al0.5Hy , 2007 .

[2]  Chen Duanyang,et al.  First-principles calculations of LaNi4Al–H solid solution and hydrides , 2006 .

[3]  J. Goyette,et al.  Hydride alloys properties investigations for hydrogen sorption compressor , 2005 .

[4]  Dongli Xu,et al.  First-principles study on the crystal, electronic structure and stability of LaNi5−xAlx (x = 0, 0.25, 0.5, 0.75 and 1) , 2005 .

[5]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[6]  I. Tanaka,et al.  Elastic constants and chemical bonding of LaNi5 and LaNi5H7 by first principles calculations , 2003 .

[7]  E. Ticianelli,et al.  Effect of partial substitution of nickel by tin, aluminum, manganese and palladium on the properties of LaNi5-type metal hydride alloys , 2003 .

[8]  J. Joubert,et al.  Structural study of the LaNi4.6Ge0.4-D2 system using X-ray and neutron powder diffraction , 2002 .

[9]  H. Fjellvåg,et al.  Violation of the minimum h-h separation "Rule" for metal hydrides. , 2002, Physical review letters.

[10]  R. Yang,et al.  First-principles investigation of solute-hydrogen interaction in a α-Ti solid solution , 2002 .

[11]  I. Tanaka,et al.  Atomic structures and energetics of LaNi5-H solid solution and hydrides , 2001 .

[12]  Jeong-Gun Park,et al.  The operating characteristics of the compressor-driven metal hydride heat pump system , 2001 .

[13]  O. A. Pringle,et al.  Electronic structures and magnetism of LaNi5–xFex compounds , 2001 .

[14]  J. Joubert,et al.  Intermetallic compounds as negative electrodes of Ni/MH batteries , 2001 .

[15]  M. Jurczyk,et al.  The electronic and electrochemical properties of the LaNi5, LaNi4Al and LaNi3AlCo systems , 2000 .

[16]  M. Gupta Electronic structure of hydrogen storage materials , 2000 .

[17]  K. Nahm,et al.  The hydriding kinetics of LaNi4.5Al0.5 with hydrogen , 1998 .

[18]  E. Krasovskii Accuracy and convergence properties of the extended linear augmented-plane-wave method , 1997 .

[19]  L. Wade,et al.  Further Studies of the Isotherms of LaNi5-xSnx-H , 1997 .

[20]  J. Kosterlitz,et al.  PHASE DIAGRAM OF THE RESTRICTED SOLID-ON-SOLID MODEL COUPLED TO THE ISING MODEL , 1996, cond-mat/9612242.

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  R. Schwarz,et al.  The effect of tin alloying on the structure of LaNi5 , 1996 .

[23]  J. R. Johnson,et al.  Effect of Ce, Co, and Sn Substitution on Gas Phase and Electrochemical Hydriding/Dehydriding Properties of LaNi5 , 1995 .

[24]  俊樹 兜森,et al.  Ca-Ni系水素吸蔵合金の繰返し水素吸収・放出特性 , 1995 .

[25]  Robert C. Bowman,et al.  The effect of tin on the degradation of LaNi5−ySny metal hydrides during thermal cycling , 1995 .

[26]  R. Bowman,et al.  Investigation of hydriding properties of LaNi4.8Sn0.2, LaNi4.27Sn0.24 and La0.9Gd0.1Ni5 after thermal cycling and aging , 1992 .

[27]  M. Gupta Electronic properties of LaNi5 and LaNi5H7 , 1987 .

[28]  D. Westlake A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn , 1983 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .