Bayesian Image Modeling of cDNA Microarray Spots

This letter explores the potential of Bayesian signal processing for improved modeling of microarray images and enhanced estimation of gene expression ratios. Building upon our earlier work, we describe a novel elliptical spot shape model, with a Bayesian model-fitting method. The analysis of gene replicates at the image-modeling level is also briefly discussed. Prior knowledge from neighboring spots is encompassed in the framework of a Markov random field, potentially enhancing the accuracy and reliability of ratio estimates. The techniques may be particularly beneficial for irregular, overlapping, damaged, saturated, or weakly expressed spots.

[1]  Adrian E. Raftery,et al.  Donuts, scratches and blanks: robust model-based segmentation of microarray images , 2005, Bioinform..

[2]  Thorsten Forster,et al.  Statistical Applications in Genetics and Molecular Biology Estimation of Expression Levels in Spotted Microarrays with Saturated Pixels , 2011 .

[3]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Neil D. Lawrence,et al.  Reducing the variability in cDNA microarray image processing by Bayesian inference , 2004, Bioinform..

[5]  Peter Bajcsy,et al.  Gridline: automatic grid alignment DNA microarray scans , 2004, IEEE Transactions on Image Processing.

[6]  Claus Thorn Ekstrøm,et al.  Spot shape modelling and data transformations for microarrays , 2004, Bioinform..

[7]  M. Rudemo,et al.  Pixel-level Signal Modelling with Spatial Correlation for Two-Colour Microarrays , 2005, Statistical applications in genetics and molecular biology.

[8]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[9]  Franz Kummert,et al.  A Markov Random Field model of microarray gridding , 2003, SAC '03.

[10]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[11]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[12]  G. Churchill Fundamentals of experimental design for cDNA microarrays , 2002, Nature Genetics.

[13]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[14]  Chris A. Glasbey,et al.  Correction for pixel censoring in cDNA microarrays , 2005 .

[15]  G. Magoulas,et al.  Improved processing of microarray data using image reconstruction techniques , 2003, IEEE Transactions on NanoBioscience.

[16]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[17]  Thomas D. Schmittgen,et al.  Real-Time Quantitative PCR , 2002 .

[18]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[19]  J. Besag,et al.  Probabilistic segmentation and intensity estimation for microarray images. , 2006, Biostatistics.

[20]  G. Gibson,et al.  Microarray Analysis , 2020, Definitions.

[21]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[22]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[23]  Jesús Angulo,et al.  Automatic analysis of DNA microarray images using mathematical morphology , 2003, Bioinform..

[24]  S. Godsill,et al.  Bayesian modelling of microarray images , 2006, 2006 IEEE International Workshop on Genomic Signal Processing and Statistics.