Vertex Sparsification in Trees

Given an unweighted tree \(T=(V,E)\) with terminals \(K \subset V\), we show how to obtain a 2-quality vertex flow and cut sparsifier H with \(V_H = K\). We prove that our result is essentially tight by providing a \(2-o(1)\) lower-bound on the quality of any cut sparsifier for stars.

[1]  Harald Räcke,et al.  Optimal hierarchical decompositions for congestion minimization in networks , 2008, STOC.

[2]  Ankur Moitra,et al.  Approximation Algorithms for Multicommodity-Type Problems with Guarantees Independent of the Graph Size , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[3]  Robert Krauthgamer,et al.  Preserving Terminal Distances Using Minors , 2012, ICALP.

[4]  Gianpaolo Oriolo,et al.  Hardness of robust network design , 2007 .

[5]  Frank Thomson Leighton,et al.  Extensions and limits to vertex sparsification , 2010, STOC '10.

[6]  Naomi Nishimura,et al.  Characterizing Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth , 1998, J. Comput. Syst. Sci..

[7]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[8]  Anupam Gupta,et al.  Steiner points in tree metrics don't (really) help , 2001, SODA '01.

[9]  Yun Kuen Cheung,et al.  Graph Minors for Preserving Terminal Distances Approximately - Lower and Upper Bounds , 2016, ICALP.

[10]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[11]  Robert Krauthgamer,et al.  Mimicking Networks and Succinct Representations of Terminal Cuts , 2013, SODA.

[12]  Uriel Feige,et al.  Interchanging distance and capacity in probabilistic mappings , 2009, ArXiv.

[13]  Prasad Raghavendra,et al.  On mimicking networks representing minimum terminal cuts , 2012, Inf. Process. Lett..

[14]  Julia Chuzhoy On vertex sparsifiers with Steiner nodes , 2012, STOC '12.

[15]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[16]  Konstantin Makarychev,et al.  Metric extension operators, vertex sparsifiers and Lipschitz extendability , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Alexandr Andoni,et al.  Towards (1 + ∊)-Approximate Flow Sparsifiers , 2013, SODA.

[18]  Robert Krauthgamer,et al.  Cutting Corners Cheaply, or How to Remove Steiner Points , 2015, SIAM J. Comput..

[19]  Chintan Shah,et al.  Computing Cut-Based Hierarchical Decompositions in Almost Linear Time , 2014, SODA.