Generalized Direct Sampling for Hierarchical Bayesian Models

We develop a new method to sample from posterior distributions in hierarchical models without using Markov chain Monte Carlo. This method, which is a variant of importance sampling ideas, is generally applicable to high-dimensional models involving large data sets. Samples are independent, so they can be collected in parallel, and we do not need to be concerned with issues like chain convergence and autocorrelation. Additionally, the method can be used to compute marginal likelihoods.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Prasad A. Naik,et al.  Planning Media Schedules in the Presence of Dynamic Advertising Quality , 1998 .

[3]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[4]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[5]  Thomas F. Coleman,et al.  Software for estimating sparse Hessian matrices , 1985, TOMS.

[6]  Nicholas G. Polson,et al.  Particle learning for general mixtures , 2010 .

[7]  Thomas F. Coleman,et al.  Algorithm 618: FORTRAN subroutines for estimating sparse Jacobian Matrices , 1984, TOMS.

[8]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[9]  Cliburn Chan,et al.  Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[10]  Wendy W. Moe,et al.  Online Advertising Response Models: Incorporating Multiple Creatives and Impression Histories , 2012 .

[11]  Murali Haran,et al.  Parallel multivariate slice sampling , 2011, Stat. Comput..

[12]  M. Powell,et al.  On the Estimation of Sparse Hessian Matrices , 1979 .

[13]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[14]  Peter J. Lenk,et al.  Simulation Pseudo-Bias Correction to the Harmonic Mean Estimator of Integrated Likelihoods , 2009 .

[15]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[16]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[17]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[18]  G. Roberts,et al.  Stability of the Gibbs sampler for Bayesian hierarchical models , 2007, 0710.4234.

[19]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[20]  Peter E. Rossi,et al.  Response Modeling with Nonrandom Marketing-Mix Variables , 2004 .

[21]  Greg M. Allenby,et al.  Modeling Interdependent Consumer Preferences , 2003 .

[22]  Jun S. Liu,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[23]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[24]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[25]  Raghuram Iyengar,et al.  A Model of Consumer Learning for Service Quality and Usage , 2007 .