Learning Inconsistent Preferences with Kernel Methods

We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent preferential structures such as inconsistent preferences and clusters of comparable items. Furthermore, we prove the universality of the proposed kernels, i.e. that the corresponding reproducing kernel Hilbert Space (RKHS) is dense in the space of skew-symmetric preference functions. To conclude the paper, we provide an extensive set of numerical experiments on simulated and real-world datasets showcasing the competitiveness of our proposed method with state-of-the-art.

[1]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[2]  Ulrich Bauer,et al.  Statistical Topological Data Analysis - A Kernel Perspective , 2015, NIPS.

[3]  M. Whiting,et al.  Flat lizard female mimics use sexual deception in visual but not chemical signals , 2009, Proceedings of the Royal Society B: Biological Sciences.

[4]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[5]  Slobodan Vucetic,et al.  Supervised clustering of label ranking data using label preference information , 2013, Machine Learning.

[6]  Alexandros Karatzoglou,et al.  Gaussian process factorization machines for context-aware recommendations , 2014, SIGIR.

[7]  Jstor,et al.  Invention in the Industrial Research Laboratory , 1963, Journal of Political Economy.

[8]  Eyke Hüllermeier,et al.  Preference Learning and Ranking by Pairwise Comparison , 2010, Preference Learning.

[9]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[10]  Neil D. Lawrence,et al.  Preferential Bayesian Optimization , 2017, ICML.

[11]  L. Thurstone A law of comparative judgment. , 1994 .

[12]  Gustau Camps-Valls,et al.  Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness , 2019, Pattern Recognit..

[13]  Zoltán Szabó,et al.  Characteristic and Universal Tensor Product Kernels , 2017, J. Mach. Learn. Res..

[14]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[15]  R. Luce,et al.  On the possible psychophysical laws. , 1959, Psychological review.

[16]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[17]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[18]  Dock Bumpers,et al.  Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[19]  James Hensman,et al.  Learning Invariances using the Marginal Likelihood , 2018, NeurIPS.

[20]  Andrew Gordon Wilson,et al.  GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.

[21]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[23]  Alexandre d'Aspremont,et al.  Ranking and synchronization from pairwise measurements via SVD , 2019, J. Mach. Learn. Res..

[24]  Maurizio Filippone,et al.  Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) , 2015, ICML.

[25]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[26]  David Carmel,et al.  Query Expansion for Email Search , 2017, SIGIR.

[27]  Mikko Kivelä,et al.  Generalizations of the clustering coefficient to weighted complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Dino Sejdinovic,et al.  Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences , 2018, ArXiv.

[29]  Iryna Gurevych,et al.  Scalable Bayesian preference learning for crowds , 2019, Machine Learning.

[30]  Luc De Raedt,et al.  Proceedings of the 22nd international conference on Machine learning , 2005 .

[31]  Zoubin Ghahramani,et al.  Collaborative Gaussian Processes for Preference Learning , 2012, NIPS.

[32]  Wei Chu,et al.  Preference learning with Gaussian processes , 2005, ICML.

[33]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[34]  E. V. Bergen,et al.  Proceedings of the Royal Society B : Biological Sciences , 2013 .

[35]  Noriko Kando,et al.  Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval , 2017, SIGIR.

[36]  Catholijn M. Jonker,et al.  Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making , 2018, AAMAS.

[37]  Hisashi Kashima,et al.  Simultaneous Clustering and Ranking from Pairwise Comparisons , 2018, IJCAI.

[38]  M. de Rijke,et al.  Copeland Dueling Bandits , 2015, NIPS.

[39]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[40]  Simon Miles,et al.  Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems , 2017 .

[41]  Jure Leskovec,et al.  Open Graph Benchmark: Datasets for Machine Learning on Graphs , 2020, NeurIPS.

[42]  Mihai Cucuringu,et al.  Spectral Ranking with Covariates , 2020, ArXiv.

[43]  Shubhra Kanti Karmaker Santu,et al.  On Application of Learning to Rank for E-Commerce Search , 2017, SIGIR.

[44]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[45]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[46]  K SriperumbudurBharath,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2011 .

[47]  Heather C. Smith,et al.  On the graph Laplacian and the rankability of data , 2019, Linear Algebra and its Applications.

[48]  Jiebo Luo,et al.  RankCompete: Simultaneous ranking and clustering of information networks , 2012, Neurocomputing.

[49]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[50]  Eyke Hüllermeier,et al.  Label Ranking with Partial Abstention based on Thresholded Probabilistic Models , 2012, NIPS.

[51]  Frederick Mosteller,et al.  An Experimental Measurement of Utility , 1951, Journal of Political Economy.

[52]  A. Tversky,et al.  On the interpretation of intuitive probability: A reply to Jonathan Cohen , 1979, Cognition.

[53]  Mihai Cucuringu,et al.  Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization , 2015, IEEE Transactions on Network Science and Engineering.

[54]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[55]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[56]  Paul E. Anderson,et al.  The Rankability of Data , 2019, SIAM J. Math. Data Sci..

[57]  S. Grossberg,et al.  Psychological Review , 2003 .

[58]  David Firth,et al.  Multiple signals in chameleon contests: designing and analysing animal contests as a tournament , 2006, Animal Behaviour.

[59]  Mary Rouncefield,et al.  Condorcet's Paradox , 1989 .

[60]  Andrew Trotman,et al.  Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval , 2014, SIGIR 2014.